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Abstract: The present paper is devoted to the spectral analysis of operators induced by fractional
differential equations and boundary conditions of Sturm-Liouville type. It should be noted that
these operators are non-self-adjoint. The spectral structure of such operators has been insufficiently
explored. In particular, a study of the completeness of systems of eigenfunctions and associated
functions has begun relatively recently. In this paper, the completeness of the system of eigenfunctions
and associated functions of one class of non-self-adjoint integral operators corresponding boundary
value problems for fractional differential equations is established. The proof is based on the
well-known Theorem of M.S. Livshits on the spectral decomposition of linear non-self-adjoint
operators, as well as on the sectoriality of the fractional differentiation operator. The results of
Dzhrbashian-Nersesian on the asymptotics of the zeros of the Mittag-Leffler function are used.
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1. Introduction

The present paper is devoted to the spectral analysis of operators induced by the fractional
differential equations and boundary conditions of Sturm-Liouville type. It should be noted that these
operators are non-self-adjoint. The spectral structure of such operators has been insufficiently explored.
In particular, a study of the completeness of systems of eigenfunctions and associated functions has
begun relatively recently. In this paper, the completeness of the system of eigenfunctions and associated
functions of one class of non-self-adjoint integral operators corresponding boundary value problems
for fractional differential equations is established. The proof is based on the well-known Theorem
of M.S. Livshits on the spectral decomposition of linear non-self-adjoint operators, as well as on the
sectoriality of the fractional differentiation operator. The results of Dzhrbashian-Nersesian on the
asymptotics of the zeros of the Mittag-Leffler function are used.

2. Results

Reference [1] studied the operator in the space L2(0, 1)

−Aρu =

1∫
0

G(x, t)u(t) dt =
1

Γ(ρ−1)

 x∫
0

(x− t)
1
ρ−1u(t)dt−

1∫
0

x
1
ρ−1

(1− t)
1
ρ−1u(t) dt

 ,

which was first considered in References [2,3], where 0 < ρ < 2 and

G(x, t) =


(1− t)

1
ρ−1x

1
ρ−1 − (x− t)

1
ρ−1

Γ(ρ−1)
, 0 ≤ t ≤ x ≤ 1

(1− t)
1
ρ−1x

1
ρ−1

Γ(ρ−1)
, 0 ≤ x ≤ t ≤ 1

Axioms 2019, 8, 117; doi:10.3390/axioms8040117 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
http://www.mdpi.com/2075-1680/8/4/117?type=check_update&version=1
http://dx.doi.org/10.3390/axioms8040117
http://www.mdpi.com/journal/axioms


Axioms 2019, 8, 117 2 of 7

is the Green function of the following problem S (with λ = 0):

1
Γ(n− ρ−1)

dn

dxn

x∫
0

(x− s)n−ρ−1−1u(s)ds + λ u = 0,

(n− 1 ≤ ρ−1 < n, n = [ρ−1] + 1, where [ρ−1] is the integer part of ρ−1)

u(0) = 0, u′(0) = 0, · · · , u(n−2)(0) = 0, u(1) = 0.

In particular, in this paper, we provide very important proof of the completeness of the system of
eigenfunctions and associated functions in L2(0, 1) of the operator Aρ for 1 < ρ < 2 based on fact that
the operator of fractional differentiation is sectorial and for 0 < ρ < 1 (this fact plays a main role in
solving boundary value problems for advection-diffusion equation of fractional order by the method
of separation of variables [4] since we can write out both the exact solution in the form of an infinite
series by eigenfunctions and the approximate solution replacing the infinite sums by sums of the first
n terms), a proof based on the well-known Livshits theorem [5] (researching of case for 1 < ρ < 2
published in this paper firstly):

Theorem 1 (Livshits). If K(x, y) (a ≤ x, y ≤ b) – is a limited kernel and "real part" 1
2 (K + K∗) of it is

non-negative kernel, then the inequality is hold

∞

∑
j=1

Re(
1
λj

) ≤
b∫

a

ReK(t, t)dt,

where λj – is the characteristic numbers of kernel K. The system of main functions of the kernel K is complete in
domain of values of the integral operator K f if and only if, when there is an equal sign in inequality above.

In his paper [6] M. M. Dzhrbashian wrote, that “the question about the completeness of the
systems of eigenfunctions of the operator Aρ or a finer question about whether these systems compose
a basis in L2(0, 1), has a certain interest but its solving is apparently associated with significant analytic
difficulties”. The questions of the completeness of the systems of eigenfunctions and associated
functions for similar problems were studied by A. V. Agibalova in [7,8]. Undoubtedly, we shall note
the fundamental results of M. M. Malamud and L. L. Oridoroga [9–12] obtained in this direction.
In [13,14] (see also [2,15]), using the theorem of Matsaev and Palant, it was established that the system
of eigenfunctions of the operator Aρ is complete in L2(0, 1). And this fact used by M. Ali, S. Aziz and
S.A. Malik in their paper [16].

As noted above, in this paper, a similar result was obtained using the well-known Livshchits
theorem [5]. The following proof of the completeness of the system of eigenfunctions is simpler than
the previously presented proofs, which makes the results of this paper very significant.

Next, we need one definition.

Definition 1. If a series of s-numbers [17] of the completely continuous operator is convergent, that is,
∞
∑

k=1
sk(A) < ∞ then such operator called as trace-class operator.

Lemma 1. Let 0 < ρ < 2, then the operator Aρ is trace-class and

sp(Aρ) =
Γ(ρ−1)

Γ(2ρ−1)
.

Proof of Lemma 1. To find the trace spAρ of the operator Aρ, let’s rewrite Aρ as Aρu = A1u− A0u where
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A0u =
1

Γ(ρ−1)

x∫
0

(x− t)
1
ρ−1u(t)dt,

A1u =
1

Γ(ρ−1)

1∫
0

x
1
ρ−1

(1− t)
1
ρ−1u(t)dt.

Clearly, for 0 < ρ < 2, the operators A0 and A1 are trace class. Hence

spAρ = sp(A1 − A0) = sp(A1)− sp(A0).

Moreover, it is clear that sp(A0) = 0. Thus

spAρ = sp(A1).

Since operator A1 is one-dimensional, it is easy to find a trace. Consider the equation

u(x)− λ

Γ(ρ−1)

1∫
0

x
1
ρ−1

(1− t)
1
ρ−1u(t)dt = 0

The Fredhold determinant
d(λ) = |1− λK11|,

where

K11 =
1

Γ(ρ−1)

1∫
0

t
1
ρ−1

(1− t)
1
ρ−1dt =

Γ(2− ν)

Γ(4− 2ν)
(ν = 2− ρ−1).

From above follow that

sp(A1) =
Γ(2− ν)

Γ(4− 2ν)

which proves the Lemma 1.

Remark 1. Of course, for ρ > 1/2, nuclearity of the operator Aρ follows from well-known
Dzhrbaschian-Nersisian lemma ([18], p. 142).

Lemma 2 (Dzhrbaschian-Nersisian). 1. All zeros of functions Eρ(z; µ) =
∞
∑

n=0

zn

Γ(µ+n/ρ)
(where ρ >

1
2 , ρ 6= 1; Imµ = 0) with largest absolute values, are prime.

2. The following asymptotic formulas are valid

γ±k = e±i π
2ρ (2πk)1/ρ

(
1 + O(

logk
k

)

)
, k→ ∞,

and the fact that the value λj is an eigenvalue of the operator Aρ if and only if Eρ(λj; 1
ρ ) = 0.

Now we give the main result of paper.

Theorem 2. The system of eigenfunctions and associated functions of the operator Aρ, where 0 < ρ < 1,
is complete in L2(0, 1).
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Proof of Theorem 2. We denote the kernel of Aρ as K(x, y). In [13] the authors have proved that this
kernel is non-negative by the following way: Let us rewrite Aρ as

Aρu =
1

Γ(ρ−1)

 1∫
0

(x− xt)
1
ρ−1u(t)dt−

x∫
0

(x− t)
1
ρ−1u(t) dt

 .

Clearly, for ρ < 1, the kernel of Aρ is non-negative.
By the same way, we may show that the kernel K∗(x, y) for adjoint operator

A∗ρu =
1

Γ(ρ−1)

 1∫
0

(t− xt)
1
ρ−1u(x)dx−

1∫
x

(t− x)
1
ρ−1u(x) dx


is non-negative too. Thus 1

2 (K + K∗) is non-negative. Let us show that the following expression holds

∞

∑
j=1

Re(
1
λj

) =

1∫
0

ReK(t, t)dt.

If λj = αj + iβ j is eigenvalue of the operator Aρ, then complex conjugate λj = αj − iβ j is
eigenvalue of the operator Aρ too. Thus

spAρ =
∞

∑
j=1

1
λj

=
∞

∑
j=1

Re(
1
λj

).

So, taking to account lemma 1, we obtain that the system of eigenfunctions and associated
functions of the operator Aρ for 0 < ρ < 1, is complete in L2(0, 1).

Remark 2. For ( 1
ρ − 1) > 0 the kernel of the operator Aρ is continuous. Therefore, as it was showed by

Lalesko [5], the Fredholm determinant of this kernel is whole function of zero kind. In this case [5],

∞

∑
i=1

1
λj

=

1∫
0

K(t, t)dt,

that is, the equation
∞

∑
j=1

Re(
1
λj

) =

1∫
0

ReK(t, t)dt

we can get by the obvious way.

Theorem 3. The system of eigenfunctions and associated functions of the operator Aρ, where 1 < ρ < 2,
is complete in L2(0, 1).

Proof of Theorem 3. For 1 < ρ < 2 the kernel of the operator Aρ is not fixed-sign, thus we cannot use
the Livshits theorem, used above. To prove the formulated theorem, let us consider the value of the
the form (Aρu, u) [19]. Let us introduce the following designation

Aρu =
1

Γ(ρ−1)

 1∫
0

(x− xt)
1
ρ−1u(t)dt−

x∫
0

(x− t)
1
ρ−1u(t) dt

 = v(x).
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So,

(Aρu, u) = (v, D1/ρ
0x v) =

1∫
0

v(x)[D1/ρ
0x v]dx =

ε∫
0

v(x)[D1/ρ
0x v]dx +

1∫
ε

v(x)[D1/ρ
0x v]dx

where

Dα
0x f (x) =

1
Γ(n− α)

(
d

dx

)n x∫
0

f (t)
(x− t)α−n+1 ,

n = [α] + 1, [α] is the integer part of α, called the operator of fractional differentiation in the
Sturm-Liouville sense of order α. As was mentioned in Reference [19] (see also the references therein),
the study of forms

1∫
ε

v(x)[D1/ρ
0x v]dx

was provided in the paper and there, in particular, were established the values of those forms lying in
|argλ| < πρ

2 . Clearly, for small values ε, the operator Aρ is sectorial. Since the operator Aρ is sectorial
and a trace-class operator, by Lidskii’s Theorem [20] the system of eigenfunctions and associated
functions of Aρ are complete in L2(0, 1).

Corollary 1. Since the operator Aρ does not generate any associated functions [21], we prove the completeness
of system

χn(x) = x
1
ρ−1Eρ(λnx

1
ρ ;

1
ρ
)

in L2(0, 1) (but the system of these eigenfunctions, unfortunately, is not orthogonal, therefore, for solving inverse
problems, and in Reference [16] the corresponding biorthogonal system was used).

By the same method, we can provide spectral analysis of the operator

A[α−1,ρ]
ρ u =

1
Γ(ρ−1)

1∫
0

x
1
ρ−1

(1− t)α−1u(t)dt− 1
Γ(ρ−1)

x∫
0

(x− t)
1
ρ−1u(t)dt,

considered in Reference [13] (and see the references therein).

Theorem 4. Let 0 < ρ < 2, α < 1
ρ . Then, the system of eigenfunctions and associated functions of the operator

A[α−1,ρ]
ρ is complete in L2(0, 1).

Proof. We carry out the proof of Theorem 4 in the same way as the proof of Theorem 3. It can easily

be shown that the kernel M(x, t) of the operator A[α−1,ρ]
ρ is non-negative. Elementary calculations

show that the kernel M∗(x, t) of the operator adjoint to the operator A[α−1,ρ]
ρ will be non-negative too.

Thus 1
2 (M + M∗) will be non-negative too. The fact that

∞

∑
j=1

Re(
1
µj
) =

1∫
0

ReM(t, t)dt

where µj are eigenvalues of the operator A[α−1,ρ]
ρ , shown in the same way as in Theorem 2.
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3. Conclusions

In the present paper, by way of the Livshits Theorem we provide proof of the completeness of
the eigenfunctions and associated functions of the operators, generated by the ordinary differential
expressions of the fractional order and boundary conditions of Sturm-Liouville type.
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