An Efficient Class of Traub–Steffensen-Type Methods for Computing Multiple Zeros
Abstract
:1. Introduction
2. The Method
Some Concrete Forms of H(u)
- (1)
- ,
- (2)
- (3)
- ,
- (4)
- (5)
- ,
- (6)
- Method 1 (M1):
- Method 2 (M2):
- Method 3 (M3):
- Method 4 (M4):
- Method 5 (M5):
- Method 6 (M6):
3. Numerical Tests
3.1. Basins of Attraction
3.2. Applications
- Dong’s method (DM):
- Halley’s method (HM):
- Chebyshev’s method (CM):
- Osada’s method (OM):
- Victory-Neta method (VNM):
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schröder, E. Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 1870, 2, 317–365. [Google Scholar] [CrossRef]
- Behl, R.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R. On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 2015, 265, 520–532. [Google Scholar] [CrossRef] [Green Version]
- Behl, R.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R.; Kanwar, V. An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 2016, 71, 775–796. [Google Scholar] [CrossRef]
- Behl, R.; Zafar, F.; Alshormani, A.S.; Junjua, M.U.D.; Yasmin, N. An optimal eighth-order scheme for multiple zeros of unvariate functions. Int. J. Comput. Meth. 2018, 15. [Google Scholar] [CrossRef]
- Dong, C. A basic theorem of constructing an iterative formula of the higher order for computing multiple roots of an equation. Math. Numer. Sin. 1982, 11, 445–450. [Google Scholar]
- Geum, Y.H.; Kim, Y.I.; Neta, B. A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 2015, 270, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.; Patrick, M. A family of root finding methods. Numer. Math. 1977, 27, 257–269. [Google Scholar] [CrossRef]
- Kansal, M.; Kanwar, V.; Bhatia, S. On some optimal multiple root-finding methods and their dynamics. Appl. Appl. Math. 2015, 10, 349–367. [Google Scholar]
- Li, S.G.; Cheng, L.Z.; Neta, B. Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 2010, 59, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liao, X.; Cheng, L. A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 2009, 215, 1288–1292. [Google Scholar]
- Neta, B. New third order nonlinear solvers for multiple roots. Appl. Math. Comput. 2008, 202, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Osada, N. An optimal multiple root-finding method of order three. J. Comput. Appl. Math. 1994, 51, 131–133. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.R.; Sharma, R. Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 2010, 217, 878–881. [Google Scholar] [CrossRef]
- Victory, H.D.; Neta, B. A higher order method for multiple zeros of nonlinear functions. Int. J. Comput. Math. 1983, 12, 329–335. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X.; Song, Y. Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. J. Comput. Appl. Math. 2011, 235, 4199–4206. [Google Scholar] [CrossRef]
- Traub, J.F. Iterative Methods for the Solution of Equations; Chelsea Publishing Company: New York, NY, USA, 1982. [Google Scholar]
- Ostrowski, A.M. Solution of Equations and Systems of Equations; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Vrscay, E.R.; Gilbert, W.J. Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and König rational iteration functions. Numer. Math. 1988, 52, 1–16. [Google Scholar] [CrossRef]
- Varona, J.L. Graphic and numerical comparison between iterative methods. Math. Intell. 2002, 24, 37–46. [Google Scholar] [CrossRef]
- Scott, M.; Neta, B.; Chun, C. Basin attractors for various methods. Appl. Math. Comput. 2011, 218, 2584–2599. [Google Scholar] [CrossRef]
- Lotfi, T.; Sharifi, S.; Salimi, M.; Siegmund, S. A new class of three-point methods with optimal convergence order eight and its dynamics. Numer. Algor. 2015, 68, 261–288. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Hoffman, J.D. Numerical Methods for Engineers and Scientists; McGraw-Hill Book Company: New York, NY, USA, 1992. [Google Scholar]
Methods | n | COC | CPU-Time | |||
---|---|---|---|---|---|---|
5 | 3.0000 | 0.01942 | ||||
5 | 3.0000 | 0.01950 | ||||
5 | 3.0000 | 0.01885 | ||||
5 | 3.0000 | 0.01955 | ||||
5 | 3.0000 | 0.02250 | ||||
0 | 4 | 3.0000 | 0.00775 | |||
0 | 4 | 3.0000 | 0.01165 | |||
0 | 4 | 3.0000 | 0.01175 | |||
5 | 3.0000 | 0.01285 | ||||
0 | 4 | 3.0000 | 0.01775 | |||
0 | 4 | 3.0000 | 0.01115 |
Methods | n | COC | CPU-Time | |||
---|---|---|---|---|---|---|
5 | 3.0000 | 0.17575 | ||||
5 | 3.0000 | 0.20354 | ||||
5 | 3.0000 | 0.23560 | ||||
5 | 3.0000 | 0.23225 | ||||
5 | 3.0000 | 0.24875 | ||||
0 | 4 | 3.0000 | 0.11121 | |||
0 | 4 | 3.0000 | 0.12100 | |||
0 | 4 | 3.0000 | 0.10925 | |||
0 | 4 | 3.0000 | 0.11725 | |||
0 | 4 | 3.0000 | 0.12125 | |||
0 | 4 | 3.0000 | 0.12525 |
Methods | n | COC | CPU-Time | |||
---|---|---|---|---|---|---|
5 | 3.0000 | 0.12925 | ||||
5 | 3.0000 | 0.14450 | ||||
5 | 3.0000 | 0.13275 | ||||
5 | 3.0000 | 0.12500 | ||||
5 | 3.0000 | 0.21355 | ||||
0 | 4 | 3.0000 | 0.05475 | |||
0 | 4 | 3.0000 | 0.05852 | |||
0 | 4 | 3.0000 | 0.05075 | |||
0 | 4 | 3.0000 | 0.05475 | |||
0 | 4 | 3.0000 | 0.05475 | |||
0 | 4 | 3.0000 | 0.06253 |
Methods | n | COC | CPU-Time | |||
---|---|---|---|---|---|---|
5 | 3.0000 | 1.047 | ||||
5 | 3.0000 | 2.141 | ||||
5 | 3.0000 | 1.985 | ||||
5 | 3.0000 | 1.906 | ||||
5 | 3.0000 | 1.219 | ||||
0 | 4 | 3.0000 | 0.390 | |||
5 | 3.0000 | 0.516 | ||||
0 | 4 | 3.0000 | 0.500 | |||
5 | 3.0000 | 0.578 | ||||
0 | 4 | 3.0000 | 0.359 | |||
0 | 4 | 3.0000 | 0.313 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Sharma, J.R.; Cesarano, C. An Efficient Class of Traub–Steffensen-Type Methods for Computing Multiple Zeros. Axioms 2019, 8, 65. https://doi.org/10.3390/axioms8020065
Kumar D, Sharma JR, Cesarano C. An Efficient Class of Traub–Steffensen-Type Methods for Computing Multiple Zeros. Axioms. 2019; 8(2):65. https://doi.org/10.3390/axioms8020065
Chicago/Turabian StyleKumar, Deepak, Janak Raj Sharma, and Clemente Cesarano. 2019. "An Efficient Class of Traub–Steffensen-Type Methods for Computing Multiple Zeros" Axioms 8, no. 2: 65. https://doi.org/10.3390/axioms8020065
APA StyleKumar, D., Sharma, J. R., & Cesarano, C. (2019). An Efficient Class of Traub–Steffensen-Type Methods for Computing Multiple Zeros. Axioms, 8(2), 65. https://doi.org/10.3390/axioms8020065