A Versatile Integral in Physics and Astronomy and Fox’s H-Function
Abstract
:1. The Integral and the H-Function
2. Specific Applications
2.1. Krätzel Integral
2.2. Inverse Gaussian Density in Statistics
2.3. Nuclear Reaction Rate Probability Integral in Astrophysics
2.4. Tsallis’ Non-Extensive Statistics and Beck–Cohen Superstatistics
2.5. Pathway Model
Author Contributions
Funding
Conflicts of Interest
References
- Mathai, A.M. A pathway to matrix-variate gamma and normal densities. Linear Algebra Appl. 2005, 396, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Zubarev, A.L. A note on the quantum-tail effect on fusion reaction rate. J. Phys. Math. Theor. 2008, 41, 312004. [Google Scholar] [CrossRef]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Krätzel, E. Integral transformations of Bessel type. In Generalized Functions and Operational Calculus; Proc. Conf. Varna, 1975; Bulgarian Academy of Sciences: Sofia, Bulgaria, 1979; pp. 148–155. [Google Scholar]
- Glaeske, H.-J.; Kilbas, A.A.; Saigo, M. A modified Bessel-type integral transform and its compositions with fractional calculus operators on spaces Fp,μ and . J. Comput. Appl. Math. 2000, 118, 151–168. [Google Scholar] [CrossRef]
- Mathai, A.M. A Handbook of Generalized Special Functions for Statistical and Physical Sciences; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Lemonte, A.J.; Cordeiro, G.M. The exponentiated generalized inverse Gaussian distribution. Stat. Probab. Lett. 2011, 81, 506–517. [Google Scholar] [CrossRef]
- Hussein, M.S.; Pato, M.P. Uniform expansion of the thermonuclear reaction rate formula. Braz. J. Phys. 1997, 27, 364–372. [Google Scholar] [CrossRef]
- Bertulani, C.A. Fixing the big bang cosmological problem. AIP Conf. Proc. 2019, 2076, 030003. [Google Scholar]
- Bertulani, C.A. Big bang nucleosynthesis anf the lithium problem. IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1291, 012002. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008. [Google Scholar]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Tsallis, C.; Haubold, H.J. Boltzmann-Gibbs entropy is sufficient but not necessary for the likelihood factorization required by Einstein. Eur. Phys. Lett. 2015, 110, 30005. [Google Scholar] [CrossRef]
- Beck, C. Stretched exponentials from superstatistics. Physica A 2006, 365, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Beck, C.; Cohen, E.G.D. Superstatistics. Physica A 2003, 322, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Mathai, A.M.; Provost, S.B. Some complex matrix-variate statistical distributions on rectangular matrices. Linear Algebra Appl. 2006, 410, 198–216. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathai, A.M.; Haubold, H.J. A Versatile Integral in Physics and Astronomy and Fox’s H-Function. Axioms 2019, 8, 122. https://doi.org/10.3390/axioms8040122
Mathai AM, Haubold HJ. A Versatile Integral in Physics and Astronomy and Fox’s H-Function. Axioms. 2019; 8(4):122. https://doi.org/10.3390/axioms8040122
Chicago/Turabian StyleMathai, Arak M., and Hans J. Haubold. 2019. "A Versatile Integral in Physics and Astronomy and Fox’s H-Function" Axioms 8, no. 4: 122. https://doi.org/10.3390/axioms8040122
APA StyleMathai, A. M., & Haubold, H. J. (2019). A Versatile Integral in Physics and Astronomy and Fox’s H-Function. Axioms, 8(4), 122. https://doi.org/10.3390/axioms8040122