Regional Enlarged Observability of Fractional Differential Equations with Riemann—Liouville Time Derivatives
Abstract
:1. Introduction
2. Problem Statement
3. Preliminaries
- Case 1.
- C is bounded (e.g., zone sensors). Let and be its adjoint. We get that the adjoint operator of can be given by
- Case 2.
- C is unbounded (e.g., pointwise sensors). In this case, we have
4. Enlarged Observability and Characterization
5. The HUM Approach
5.1. Pointwise Sensors
5.2. Zone Sensors
6. Example
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leibniz, G.W. Mathematische Schriften. Bd. V: Die mathematischen Abhandlungen; Herausgegeben von C. I. Gerhardt, Georg Olms Verlagsbuchhandlung: Hildesheim, Germany, 1962. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Machado, J.A.T.; Kiryakova, V. The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 307–336. [Google Scholar] [CrossRef]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef]
- Povstenko, Y. Linear Fractional Diffusion-wave Equation for Scientists and Engineers; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Mainardi, F.; Kiryakova, V.; Atanacković, T. Fractional calculus: D’où venons-nous? Que sommes-nous? Où allons-nous? Fract. Calc. Appl. Anal. 2016, 19, 1074–1104. [Google Scholar] [CrossRef]
- Dzieliński, A.; Sierociuk, D. Fractional order model of beam heating process and its experimental verification. In New Trends in Nanotechnology and Fractional Calculus Applications; Springer: New York, NY, USA, 2010; pp. 287–294. [Google Scholar] [CrossRef]
- Sierociuk, D.; Dzieliński, A.; Sarwas, G.; Petras, I.; Podlubny, I.; Skovranek, T. Modelling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2013, 371, 20120146. [Google Scholar] [CrossRef] [PubMed]
- Dzieliński, A.; Sarwas, G.; Sierociuk, D. Time domain validation of ultracapacitor fractional order model. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 3730–3735. [Google Scholar] [CrossRef]
- Dzieliński, A.; Sierociuk, D. Ultracapacitor modelling and control using discrete fractional order state-space model. Acta Montan. Slovaca 2008, 13, 136–145. [Google Scholar]
- Dzieliński, A.; Sierociuk, D.; Sarwas, G. Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 58, 583–592. [Google Scholar] [CrossRef]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Inc.: Danbury, CT, USA, 2006. [Google Scholar]
- Tavares, D.; Almeida, R.; Torres, D.F.M. Fractional Herglotz variational problems of variable order. Discrete Contin. Dyn. Syst. Ser. S 2018, 11, 143–154. [Google Scholar] [CrossRef]
- Debbouche, A.; Torres, D.F.M. Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions. Fract. Calc. Appl. Anal. 2015, 18, 95–121. [Google Scholar] [CrossRef]
- Mozyrska, D.; Torres, D.F.M. Minimal modified energy control for fractional linear control systems with the Caputo derivative. Carpathian J. Math. 2010, 26, 210–221. [Google Scholar]
- Xue, R. Observability for fractional diffusion equations by interior control. Fract. Calc. Appl. Anal. 2017, 20, 537–552. [Google Scholar] [CrossRef]
- Axtell, M.; Bise, M.E. Fractional calculus application in control systems. In Proceedings of the IEEE Conference on Aerospace and Electronics, Dayton, OH, USA, 21–25 May 1990; Volume 2, pp. 563–566. [Google Scholar] [CrossRef]
- Baleanu, D.; Golmankhaneh, A.K.; Golmankhaneh, A.K. On electromagnetic field in fractional space. Nonlinear Anal. Real World Appl. 2010, 11, 288–292. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Liu, Z.; Han, J. Integral boundary value problems for fractional order integro-differential equations. Dyn. Syst. Appl. 2012, 21, 535–547. [Google Scholar]
- Liu, Z.; Sun, J. Nonlinear boundary value problems of fractional functional integro-differential equations. Comput. Math. Appl. 2012, 64, 3228–3234. [Google Scholar] [CrossRef]
- Oustaloup, A. From fractality to non integer derivation: A fundamental idea for a new process control strategy. In Analysis and Optimization of Systems; Bensoussan, A., Lions, J.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 53–64. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional differential equations. In Mathematics in Science and Engineering; Academic Press, Inc.: San Diego, CA, USA, 1999. [Google Scholar]
- Li, C.; Zeng, F. Numerical Methods for Fractional Calculus; Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Li, C.; Yi, Q.; Kurths, J. Fractional Convection. J. Comput. Nonlinear Dyn. 2017, 13, 011004. [Google Scholar] [CrossRef]
- Li, C.; Chen, A. Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 2018, 95, 1048–1099. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Topics in fractional differential equations. In Developments in Mathematics; Springer: New York, NY, USA, 2012; Volume 27. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Baleanu, D.; Nieto, J.J.; Torres, D.F.M.; Zhou, Y. A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. J. Comput. Appl. Math. 2018, 339, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhong, Q. Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables. Appl. Math. Lett. 2018, 80, 12–19. [Google Scholar] [CrossRef]
- Amouroux, M.; El Jaï, A.; Zerrik, E. Regional observability of distributed systems. Int. J. Syst. Sci. 1994, 25, 301–313. [Google Scholar] [CrossRef]
- Dolecki, S.; Russell, D.L. A general theory of observation and control. SIAM J. Control Optim. 1977, 15, 185–220. [Google Scholar] [CrossRef]
- El Jaï, A.; Pritchard, A.J. Capteurs et actionneurs dans l’analyse des systèmes distribués. In Recherches en Mathématiques Appliquées [Research in Applied Mathematics]; Masson: Paris, France, 1986; Volume 3, p. 204. [Google Scholar]
- El Jaï, A.; Simon, M.C.; Zerrik, E. Regional observability and sensor structures. Sens. Actuators A Phys. 1993, 39, 95–102. [Google Scholar] [CrossRef]
- Zerrik, E.H.; Bourray, H. Gradient observability for diffusion systems. Int. J. Appl. Math. Comput. Sci. 2003, 13, 139–150. [Google Scholar]
- Ge, F.; Chen, Y.; Kou, C. Regional gradient controllability of sub-diffusion processes. J. Math. Anal. Appl. 2016, 440, 865–884. [Google Scholar] [CrossRef]
- Debbouche, A.; Torres, D.F.M. Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces. Int. J. Control 2013, 86, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- Debbouche, A.; Torres, D.F.M. Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions. Appl. Math. Comput. 2014, 243, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Karite, T.; Boutoulout, A.; Torres, D.F.M. Enlarged controllability of Riemann-Liouville fractional differential equations. J. Comput. Nonlinear Dyn. 2018, 13, 090907. [Google Scholar] [CrossRef]
- Ge, F.; Chen, Y.; Kou, C. On the regional gradient observability of time fractional diffusion processes. Autom. J. IFAC 2016, 74, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ge, F.; Chen, Y.; Kou, C. Regional Analysis of Time-Fractional Diffusion Processes; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Zheng, G.; Ali, M.M. Observability estimate for the fractional order parabolic equations on measurable sets. Abstr. Appl. Anal. 2014, 361904. [Google Scholar] [CrossRef]
- Lions, J.L. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. In Recherches en Mathématiques Appliquées [Research in Applied Mathematics]; Masson: Paris, France, 1988. [Google Scholar]
- Lions, J.L. Sur la contrôlabilité exacte élargie. In Partial Differential Equations and the Calculus of Variations; Birkhäuser Boston: Boston, MA, USA, 1989; Volume 2, pp. 703–727. [Google Scholar]
- Almeida, R.; Pooseh, S.; Torres, D.F.M. Computational Methods in the Fractional Calculus of Variations; Imperial College Press: London, UK, 2015. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X. Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J. Control Optim. 2015, 53, 1920–1933. [Google Scholar] [CrossRef]
- Mainardi, F.; Paradisi, P.; Gorenflo, R. Probability distributions generated by fractional diffusion equations. arXiv, 2007; arXiv:0704.0320. [Google Scholar]
- Klimek, M. On Solutions of Linear Fractional Differential Equations of a Variational Type; Czestochowa University of Technology: Czestochowa, Poland, 2009. [Google Scholar]
- Pritchard, A.J.; Wirth, A. Unbounded control and observation systems and their duality. SIAM J. Control Optim. 1978, 16, 535–545. [Google Scholar] [CrossRef]
- Salamon, D. Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach. Trans. Am. Math. Soc. 1987, 300, 383–431. [Google Scholar] [CrossRef]
- Weiss, G. Admissible observation operators for linear semigroups. Israel J. Math. 1989, 65, 17–43. [Google Scholar] [CrossRef]
- Curtain, R.F.; Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory; Texts in Applied Mathematics; Springer: New York, NY, USA, 1995; Volume 21. [Google Scholar] [CrossRef]
- Zouiten, H.; Boutoulout, A.; El Alaoui, F.Z. On the regional enlarged observability for linear parabolic systems. J. Math. Syst. Sci. 2017, 7, 79–87. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer Monographs in Mathematics; Springer: Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouiten, H.; Boutoulout, A.; Torres, D.F.M. Regional Enlarged Observability of Fractional Differential Equations with Riemann—Liouville Time Derivatives. Axioms 2018, 7, 92. https://doi.org/10.3390/axioms7040092
Zouiten H, Boutoulout A, Torres DFM. Regional Enlarged Observability of Fractional Differential Equations with Riemann—Liouville Time Derivatives. Axioms. 2018; 7(4):92. https://doi.org/10.3390/axioms7040092
Chicago/Turabian StyleZouiten, Hayat, Ali Boutoulout, and Delfim F. M. Torres. 2018. "Regional Enlarged Observability of Fractional Differential Equations with Riemann—Liouville Time Derivatives" Axioms 7, no. 4: 92. https://doi.org/10.3390/axioms7040092
APA StyleZouiten, H., Boutoulout, A., & Torres, D. F. M. (2018). Regional Enlarged Observability of Fractional Differential Equations with Riemann—Liouville Time Derivatives. Axioms, 7(4), 92. https://doi.org/10.3390/axioms7040092