# Unification Theories: Examples and Applications

## Abstract

**:**

## 1. Introduction

## 2. Examples of Unification Problems

**Remark**

**1.**

**Remark**

**2.**

**Remark**

**3.**

**Remark**

**4.**

**Remark**

**5.**

**Remark**

**6.**

**Remark**

**7.**

## 3. The Unification of Non-Associative Structures

#### 3.1. UJLA Structures

**Definition**

**1.**

**Remark**

**8.**

**Theorem**

**1.**

**Theorem**

**2.**

**Remark**

**9.**

**Remark**

**10.**

**Remark**

**11.**

**Proof.**

#### 3.2. Yang–Baxter Equations

**Definition**

**2.**

- (i)
- $\alpha =\gamma \ne 0,\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\beta \ne 0$;
- (ii)
- $\beta =\gamma \ne 0,\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\alpha \ne 0$;
- (iii)
- $\alpha =\beta =0,\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\gamma \ne 0$.

#### 3.3. Unification of the Conclusions of Theorems

**Theorem**

**3.**

**Proof.**

**Theorem**

**4.**

**Proof.**

**Remark**

**13.**

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Weil, A. A 1940 Letter of Andre Weil on Analogy in Mathematics (Trans. by Martin H. Krieger). Notices AMS
**2005**, 52, 341, (Trans. in Romanian by Florin Caragiu, “Cunoasterea Stiintifica in Orizontul Experierii Tainei (II)”, pg. 98). [Google Scholar] - Marcus, S.; Nichita, F.F. On Transcendental Numbers: New Results and a Little History. Axioms
**2018**, 7, 15. [Google Scholar] [CrossRef] - Iordanescu, R. Jordan Structures in Geometry and Physics with an Appendix on Jordan Structures in Analysis; Romanian Academy Press: Bucharest, Romania, 2003. [Google Scholar]
- Desbrow, D. On Evaluating ${\int}_{-\infty}^{+\infty}{e}^{ax(x-2b)}dx$ by Contour Integration Round a Parallelogram. Am. Math. Mon.
**1998**, 105, 726–731. [Google Scholar] - Majid, S. A Quantum Groups Primer; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Ernst, T. Convergence Aspects for Generalizations of q-Hypergeometric Functions. Axioms
**2015**, 4, 134–155. [Google Scholar] [CrossRef] - Nichita, F.F. On Jordan algebras and unification theories. Roman. J. Pure Appl. Math.
**2016**, 4, 305–316. [Google Scholar] - Iordanescu, R.; Nichita, F.F.; Nichita, I.M. The Yang–Baxter Equation, (Quantum) Computers and Unifying Theories. Axioms
**2014**, 3, 360–368. [Google Scholar] [CrossRef] - Dăscălescu, S.; Nichita, F.F. Yang–Baxter operators arising from (co)algebra structures. Commun. Algebra
**1999**, 27, 5833–5845. [Google Scholar] [CrossRef] - Majid, S. Solutions of the Yang–Baxter equation from braided-Lie algebras and braided groups. J. Knot Theory Its Ramif.
**1995**, 4, 673–697. [Google Scholar] [CrossRef] - Nichita, F.F.; Popovici, B.P. Yang–Baxter operators from (G,θ)-Lie algebras. Roman. Rep. Phys.
**2011**, 63, 641–650. [Google Scholar] - Todorov, I.; Dubois-Violette, M. Deducing the symmetry of the standard model from the automorphism and structure groups of the exceptional Jordan algebra. arXiv, 2018; arXiv:1806.09450. [Google Scholar] [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nichita, F.F.
Unification Theories: Examples and Applications. *Axioms* **2018**, *7*, 85.
https://doi.org/10.3390/axioms7040085

**AMA Style**

Nichita FF.
Unification Theories: Examples and Applications. *Axioms*. 2018; 7(4):85.
https://doi.org/10.3390/axioms7040085

**Chicago/Turabian Style**

Nichita, Florin F.
2018. "Unification Theories: Examples and Applications" *Axioms* 7, no. 4: 85.
https://doi.org/10.3390/axioms7040085