Next Article in Journal
Gaussian–Versoria Mixed Kernel Correntropy-Based Robust Parameter and State Estimation for Bilinear State–Space Systems with Non-Gaussian Process and Measurement Noises
Previous Article in Journal
Perturbation for the Group Inverse in a Banach Algebra
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative

by
Ravichandran Vivek
1,
Waleed Mohammed Abdelfattah
2,3,* and
Elsayed Mohamed Elsayed
4,5
1
Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore 641008, India
2
College of Engineering, University of Business and Technology, Jeddah 23435, Saudi Arabia
3
Department of Engineering Mathematics and Physics, Faculty of Engineering, Zagazig University, Zagazig P.O. Box 44519, Egypt
4
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
5
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
*
Author to whom correspondence should be addressed.
Axioms 2025, 14(8), 629; https://doi.org/10.3390/axioms14080629
Submission received: 9 July 2025 / Revised: 4 August 2025 / Accepted: 7 August 2025 / Published: 11 August 2025

Abstract

In this article, a novel type of equation, namely the Φ -Hilfer fractional-order integro-differential delay system ( Φ -HFOIDDS), is proposed. Here, we study the existence and Hyers–Ulam–Mittag–Leffler (H-U-M-L) stability of the aforementioned equation which are obtained by using the multivariate Mittag–Leffler function, Banach contraction principle, and Picard operator method as well as generalized Gronwall inequality. Finally, we conclude this paper by constructing a suitable example to illustrate the applicability of the principal outcomes.

1. Introduction

Like regular calculus, fractional calculus (FC) has received significant recent scientific attention. This is because FC can provide better descriptions of phenomena that occur in the real world. Additionally, these derivatives have a wide range of uses in the description of systems with memory effects. The aforesaid calculus has been applied in a variety of frameworks to study several infectious disease models, for example, those in [1,2,3]. Additionally, FC has been widely used in the fields of physics, engineering, and cosmology. For illustration, we quote some citations [4,5,6]. Here we note that FC has important applications in physics which have recently been identified by numerous scientists (see some relevant results in [7,8]. Moreover, the said area has been used increasingly to investigate various viral infectious diseases, including Hepatitis B and others in [9,10,11,12]. Also, some interesting applications in fluid mechanics, vegetable oil processing, electromagnetic theory, and pine wilt disease can be read in the cited articles as [13,14,15,16,17].
In the literature, there are several definitions of fractional integrals and derivatives, the most well-known of which are the Riemann–Liouville (R-L) and Caputo-type fractional derivatives. Hilfer [5] introduced a generalization that encompasses both the R-L and Caputo derivatives, known as the Hilfer fractional derivative (HFD). Theoretical simulations of thermal reversibility in crystalline compounds, engineering, constitutive modeling of physics, chemical processing, and other fields have established the usefulness and applicability of the HFD. Building on previous work, Sousa and Oliveira [18] proposed the ψ -Hilfer fractional derivative ( ψ -HFD), offering a more flexible framework for FC. The advantage of the fractional operator ψ -Hilfer proposed here is the freedom of choice of the classical differentiation operator and the choice of the function ψ , i.e., from the choice of the function ψ , the operator of classical differentiation, can act on the fractional integration operator or else the fractional integration operator can act on the classical differentiation operator. Some properties of this operator can be found in [18]. Several scientists [19,20,21,22,23,24,25] have used various fractional derivatives to investigate the existence and Ulam-type stability of fractional-order integro-differential equations (FOIDEs). In [26,27,28,29,30], the Ulam-type stability of FOIDEs with delay has been studied.
The authors in [31] considered the following initial value problem for the ψ -Hilfer fractional-order differential equation in delay form
D 0 + α , β , ψ H x ( τ ) = f ( τ , x ( τ ) , x ( g ( τ ) ) ) , τ I : = ( 0 , d ] , I 0 + 1 γ , ψ x ( 0 + ) = x 0 , x ( t ) = φ ( t ) , t [ h , 0 ] ,
where D 0 + α , β , ψ H ( · ) is the ψ -HFD of order 0 < α < 1 , and type 0 β 1 , I 0 + 1 γ , ψ ( · ) is the ψ -type R-L fractional integral of order 1 γ , γ = α + β α β , by some properties of ψ -Hilfer fractional calculus, the standard Picard operator, and an abstract Gronwall lemma.
Li in [22], studied the existence and uniqueness of solutions to a new nonlinear Hilfer integro-differential equation with an initial condition
D a + α , β H u ( x ) + i = 1 m λ i I a + β i u ( x ) = I a + β g ( x , u ( x ) ) , β i β , x ( a , b ] I a + 1 γ u ( a ) = u a , γ = α + β α β ,
where λ i R for i = 1 , 2 , , m . and D a + α , β H ( · ) is the HFD of order 0 < α < 1 and type 0 β 1 , I a + β i ( · ) is the R-L fractional integral of the order β i , and the nonlinear term g : ( a , b ] × R R is a function satisfying certain conditions.
In precise terms, here we study the following Φ -HFOIDDS which are motivated by the preceding studies [22,31]:
D 0 + σ , ξ , Φ H v ( t ) + i = 1 m μ i I 0 + ξ i , Φ v ( t ) = I 0 + ξ , Φ f ( t , v ( t ) , v ( g ( t ) ) ) , t θ : = ( 0 , b ] , I 0 + 1 ϑ , Φ v ( 0 + ) = v 0 R , v ( t ) = η ( t ) , t [ ρ , 0 ] ,
where μ i R for i = 1 , 2 , , m , D 0 + σ , ξ , Φ H ( · ) indicates the Φ -Hilfer fractional derivative (for short Φ -HFD) of order σ ( 0 , 1 ) and type ξ [ 0 , 1 ] , ξ i ξ , I 0 + 1 ϑ , Φ ( · ) , I 0 + ξ i , Φ ( · ) are Φ -R-L fractional integrals of orders 1 ϑ ( ϑ = σ + ξ σ ξ ) , and ξ i , f : θ × R × R R is a given function.
The main contributions and advantages of this manuscript are as follows:
  • For the first time in the literature, the existence and H-U-M-L stability for Φ -HFOIDDS is investigated.
  • A new set of sufficient conditions is established for the existence and H-U-M-L stability for Φ -HFOIDDS 1.
  • Our main technique relies on the Picard operator method, and the generalized Gronwall’s inequality for the Φ -Hilfer derivative is efficiently used to establish the novel results.
  • An example is presented to verify the considered theoretical results.

2. Prerequisites

Let θ = [ a , b ] ( 0 < a < b < ) be a finite interval on R + , and let C ( θ ) be the space of continuous function f : θ R with the norm
f C ( θ ) = sup t θ | f ( t ) | .
The weighted space C 1 ϑ , Φ ( θ ) of continuous f on θ is defined by (see [19])
C 1 ϑ , Φ ( θ ) = { f : θ R ; ( Φ ( t ) Φ ( a ) ) 1 ϑ f ( t ) C ( θ ) } , 0 ϑ < 1 ,
with the norm
f C 1 ϑ , Φ ( θ ) = sup t θ ( Φ ( t ) Φ ( a ) ) 1 ϑ f ( t ) .
Definition 1 
([18]). Let σ > 0 , f be an integrable function defined on θ and Φ C 1 ( θ ) be an increasing function with Φ ( t ) 0 , for all t θ . The left-sided Φ-type R-L fractional integral operator of order σ of a function f is described by
I a + σ , Φ f ( t ) = 1 Γ ( σ ) a t Φ ( s ) ( Φ ( t ) Φ ( s ) ) σ 1 f ( s ) d s .
Definition 2 
([18]). Let n 1 < σ < n with n N , f , Φ C n ( θ , R ) two functions such that Φ is increasing and Φ ( t ) 0 , for all t θ . The left-sided Φ-HFD D a + σ , ξ , Φ H of function f of order σ and type ξ [ 0 , 1 ] is defined by
D a + σ , ξ , Φ H f ( t ) = I a + ξ ( n σ ) , Φ 1 Φ ( t ) d d t n I a + ( 1 ξ ) ( n σ ) , Φ f ( t ) .
Definition 3 
([22]). The multivariate Mittag–Leffler function is described by
E ( σ 1 , , σ m ) , ξ ( x 1 , , x m ) = l = 0 l 1 + l 2 + + l m = l l l 1 , , l m x 1 l 1 x m l m Γ ( σ 1 l 1 + + σ m l m + ξ ) ,
where σ i , ξ > 0 and x i C for i = 1 , 2 , , m and
l l 1 , , l m = l ! l 1 ! l m ! .
Definition 4 
([31]). Let ( X , τ ) be a metric space. Now S : X X is called a Picard operator if there exists v X such that
( i )
F S = { v } , where F S = { v X : S ( v ) = v } is the fixed point set of S ;
( i i )
the sequence ( S n ( v 0 ) ) n N converges to v for every v 0 X .
Lemma 1 
([31]). Let ( X , τ , ) be an ordered metric space, and let S : X X be an increasing Picard operator with F S = { v S } . Then for v X , v S ( v ) implies v v S .

3. Existence and Uniqueness of Solutions

Using Lemma 2.9 in [31] and Theorem 3 in [22], we can rewrite the equation in its equivalent integral form as
v ( t ) = η ( t ) , t [ ρ , 0 ] , v 0 Γ ( ϑ ) l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 + l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ f ( t , v ( t ) , v ( g ( t ) ) ) , t θ .
The following hypotheses are necessary in obtaining the main results.
( H 1 )
The functions f C ( θ × R 2 , R ) , g C ( θ , [ ρ , b ] ) , with g ( t ) t and ρ > 0 .
( H 2 )
There is a constant L f > 0 such that
| f ( t , v 1 , v 2 ) f ( t , w 1 , w 2 ) | L f i = 1 2 | v i w i | , f o r   e v e r y t θ , v i , w i R , i = 1 , 2 .
( H 3 )
We have the inequality
Ω : = 2 L f ( Φ ( b ) Φ ( 0 ) ) σ + ξ Γ ( ϑ ) E ( σ + ξ 1 , , σ + ξ m ) , 2 ( σ + ξ ) σ ξ × ( | μ 1 | ( Φ ( b ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( b ) Φ ( 0 ) ) σ + ξ m ) < 1 .
Theorem 1.
If ( H i ) ( i = 1 , 2 , 3 ) hold, then Equation (1) has a unique solution in C [ ρ , b ] C 1 ϑ , Φ ( θ ) .
Proof.
In view of Equation (2), we have
v ( t ) = η ( t ) , t [ ρ , 0 ] , v 0 Γ ( ϑ ) l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 + l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ f ( t , v ( t ) , v ( g ( t ) ) ) , t θ .
Let us define an operator S f : C [ ρ , b ] C [ ρ , b ] as follows:
S f ( v ( t ) ) = η ( t ) , t [ ρ , 0 ] , v 0 Γ ( ϑ ) l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 + l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ f ( t , v ( t ) , v ( g ( t ) ) ) , t θ .
We transform the existence of a solution for Equation (3) into a fixed point, w = S f v , where S f is mentioned by Equation (4). Clearly, the operator S f is continuous:
| S f ( v ) ( t ) S f ( v ) ( t 0 ) | = | ( v 0 Γ ( ϑ ) l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 + l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ f ( t , v ( t ) , v ( g ( t ) ) ) ) ( v 0 Γ ( ϑ ) l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ ( Φ ( t 0 ) Φ ( 0 ) ) ϑ 1 + l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ f ( t 0 , v ( t 0 ) , v ( g ( t 0 ) ) ) ) | 0 a s t t 0 .
Next, we show that the operator S f is a contraction mapping. For t [ ρ , 0 ] , we have
| S f ( v ) ( t ) S f ( w ) ( t ) | = 0 , v , w C ( [ ρ , 0 ] , R ) .
For each t θ , we have
| S f ( v ) ( t ) S f ( w ) ( t ) | l = 0 l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m I 0 + ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ × | f ( t , v ( t ) , v ( g ( t ) ) ) f ( t , w ( t ) , w ( g ( t ) ) ) | l = 0 l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m ( L f Γ ( σ + ξ + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) × 0 t Φ ( s ) ( Φ ( t ) Φ ( s ) ) σ + ξ + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 ( Φ ( s ) Φ ( 0 ) ) ϑ 1 × ( Φ ( s ) Φ ( 0 ) ) 1 ϑ | v ( s ) w ( s ) | + | v ( g ( s ) ) w ( g ( s ) ) | d s ) l = 0 l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m ( L f Γ ( σ + ξ + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) × 0 t Φ ( s ) ( Φ ( t ) Φ ( s ) ) σ + ξ + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 ( Φ ( s ) Φ ( 0 ) ) ϑ 1 × { [ max s [ 0 , b ] | ( Φ ( s ) Φ ( 0 ) ) 1 ϑ ( v ( s ) w ( s ) ) | + max s [ 0 , b ] | ( Φ ( s ) Φ ( 0 ) ) 1 ϑ ( v ( g ( s ) ) w ( g ( s ) ) ) | ] } d s ) l = 0 l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m ( 2 L f Γ ( σ + ξ + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) × v w C 1 ϑ , Φ [ 0 , b ] 0 t Φ ( s ) ( Φ ( t ) Φ ( s ) ) σ + ξ + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 ( Φ ( s ) Φ ( 0 ) ) ϑ 1 d s = 2 L f ( Φ ( b ) Φ ( 0 ) ) σ + ξ Γ ( ϑ ) l = 0 l 1 + l 2 + + l m = l l l 1 , l 2 , , l m | μ 1 | l 1 | μ 2 | l 2 | μ m | l m × ( Φ ( b ) Φ ( 0 ) ) ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m Γ ( 2 ( σ + ξ ) σ ξ + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) v w C 1 ϑ , Φ [ 0 , b ] . = Ω v w C 1 ϑ , Φ [ 0 , b ] .
It follows that ( H 3 ) , S f is a contraction on C [ ρ , b ] . Hence, thanks to the Banach contraction principle, S f has a unique fixed point v which is a solution to Equation (1). □

4. Stability Theory

In this section, we will discuss the H-U-M-L stability results for Φ -HFOIDDSs (1).
Definition 5.
Equation (1) is H-U-M-L stable with respect to E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( b ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( b ) Φ ( 0 ) ) σ + ξ m ) , if there exists C E ( σ + ξ 1 , , σ + ξ m ) > 0 where for each ϵ > 0 and for each solution w C ( [ ρ , b ] , R ) of
| D 0 + σ , ξ , Φ H w ( t ) + i = 1 m μ i I 0 + ξ i , Φ w ( t ) I 0 + ξ , Φ f ( t , w ( t ) , w ( g ( t ) ) ) | ϵ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( t ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) ,
there exists a solution v C ( [ ρ , b ] , R ) of Equation (1) with
| w ( t ) v ( t ) | C E ( σ + ξ 1 , , σ + ξ m ) ϵ E ( σ + ξ 1 , , σ + ξ m ) × ( | μ 1 | ( Φ ( t ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) , t [ ρ , b ] .
Remark 1.
A function v C ( [ ρ , b ] , R ) is a solution of inequality (5) iff there exists f 1 C ( [ ρ , b ] , R ) such that
( i )
| f 1 ( t ) | ϵ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( t ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) , t [ ρ , b ] ,
( i i )
D 0 + σ , ξ , Φ H v ( t ) + i = 1 m μ i I 0 + ξ i , Φ v ( t ) = I 0 + ξ , Φ f ( t , v ( t ) , v ( g ( t ) ) ) + f 1 ( t ) , t θ .
Theorem 2.
Assume that ( H i ) ( i = 1 , 2 , 3 ) are fulfilled, then Equation (1) is H-U-M-L stable.
Proof
Let v C [ ρ , 0 ] C 1 ϑ , Φ [ 0 , b ] satisfy (5). It follows that
| v ( t ) v 0 Γ ( ϑ ) l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ f ( t , v ( t ) , v ( g ( t ) ) ) | ϵ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( b ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) , t θ .
Observe that | w ( s ) v ( s ) | = 0 , for t [ ρ , 0 ] .
For every t θ , using ( H 2 ) and inequality (6), we have
| w ( t ) v ( t ) | | w ( t ) w 0 Γ ( ϑ ) l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ f ( t , w ( t ) , w ( g ( t ) ) ) | + | l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ f ( t , w ( t ) , w ( g ( t ) ) ) l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × I 0 + ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m , Φ f ( t , v ( t ) , v ( g ( t ) ) ) | ϵ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( t ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) + l = 0 l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × L f Γ ( ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) × 0 t Φ ( s ) ( Φ ( t ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 [ | w ( s ) v ( s ) | + | w ( g ( s ) ) v ( g ( s ) ) | ] d s .
For all u C ( [ ρ , b ] , R + ) , define an operator S 1 : C ( [ ρ , b ] , R + ) C ( [ ρ , b ] , R + ) by
S 1 ( u ) ( t ) = 0 , t [ ρ , 0 ] , ϵ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( t ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) + l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × L f Γ ( ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) × ( 0 t Φ ( s ) ( Φ ( t ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 u ( s ) d s + 0 t Φ ( s ) ( Φ ( t ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 u ( g ( s ) ) d s ) , t θ .
We want to prove that S 1 is a Picard operator. Let u , u 1 C ( [ ρ , b ] , R ) , and by using ( H 2 ) , we have
S 1 ( u ) ( t ) S 1 ( u 1 ) ( t ) C 1 ϑ , Φ 2 L f ( Φ ( b ) Φ ( 0 ) ) σ + ξ Γ ( ϑ ) l = 0 l 1 + l 2 + + l m = l l l 1 , l 2 , , l m | μ 1 | l 1 | μ 2 | l 2 | μ m | l m × ( Φ ( b ) Φ ( 0 ) ) ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m Γ ( 2 ( σ + ξ ) σ ξ + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) u u 1 C 1 ϑ , Φ [ 0 , b ] .
Hence S 1 is a contraction on C ( [ ρ , b ] , R ) .
Taking the Banach contraction principle to S 1 , we see that S 1 is a Picard operator and F S 1 = u . Then, for any t θ , we have
u ( t ) ( = S 1 u ( t ) ) = ϵ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( b ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) + l = 0 l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × L f Γ ( ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) × ( 0 t Φ ( s ) ( Φ ( t ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 u ( s ) d s + 0 t Φ ( s ) ( Φ ( t ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 u ( g ( s ) ) d s ) .
Next, it will be shown that the solution u is increasing. For every 0 t 1 < t 2 b (letting p : = min s [ 0 , b ] [ u ( s ) + u ( g ( s ) ) ] R + ), we have
u ( t 2 ) u ( t 1 ) = ϵ [ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( t 2 ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t 2 ) Φ ( 0 ) ) σ + ξ m ) E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( t 1 ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t 1 ) Φ ( 0 ) ) σ + ξ m ) ] + L f Γ ( ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) × 0 t 1 Φ ( s ) [ ( Φ ( t 2 ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 ( Φ ( t 1 ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 ] ( u ( s ) + u ( g ( s ) ) ) d s + L f Γ ( ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) + t 1 t 2 Φ ( s ) ( Φ ( t 2 ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 ( u ( s ) + u ( g ( s ) ) ) d s ϵ [ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( t 2 ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t 2 ) Φ ( 0 ) ) σ + ξ m ) E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( t 1 ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t 1 ) Φ ( 0 ) ) σ + ξ m ) ] + l = 0 l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × p L f Γ ( ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) × 0 t 1 Φ ( s ) [ ( Φ ( t 2 ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 ( Φ ( t 1 ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 ] d s + l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × p L f Γ ( ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) × t 1 t 2 Φ ( s ) ( Φ ( t 2 ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 d s = ϵ [ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( t 2 ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t 2 ) Φ ( 0 ) ) σ + ξ m ) E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( t 1 ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t 1 ) Φ ( 0 ) ) σ + ξ m ) ] + l = 0 l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × p L f Γ ( ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m + 1 ) × ( Φ ( t 2 ) Φ ( 0 ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ( Φ ( t 1 ) Φ ( 0 ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m > 0 .
Thus u is increasing, so u ( g ( t ) ) u ( t ) since g ( t ) t and
u ( t ) ϵ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( b ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) + l = 0 ( 1 ) l l 1 + l 2 + + l m = l l l 1 , l 2 , , l m μ 1 l 1 μ 2 l 2 μ m l m × 2 L f Γ ( ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m ) × 0 t Φ ( s ) ( Φ ( t ) Φ ( s ) ) ( σ + ξ ) + ( σ + ξ 1 ) l 1 + + ( σ + ξ m ) l m 1 u ( s ) d s .
By Lemma 2.11 in [31], we get
u ( t ) ϵ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( b ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) C E ( σ + ξ 1 , , σ + ξ m ) ϵ E ( σ + ξ 1 , , σ + ξ m ) ( | μ 1 | ( Φ ( b ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) ,
where
C E ( σ + ξ 1 , , σ + ξ m ) : = E ( σ + ξ 1 , , σ + ξ m ) 2 L f ( | μ 1 | ( Φ ( b ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( b ) Φ ( 0 ) ) σ + ξ m ) .
Specifically, if u = | w v | , from Equation (7), u S 1 u by Lemma 1, we deduce that u u , where S 1 is increasing Picard operator. Then
| v ( t ) w ( t ) | C E ( σ + ξ 1 , , σ + ξ m ) ϵ E ( σ + ξ 1 , , σ + ξ m ) × ( | μ 1 | ( Φ ( t ) Φ ( 0 ) ) σ + ξ 1 , , | μ m | ( Φ ( t ) Φ ( 0 ) ) σ + ξ m ) , t [ ρ , b ] .
Consequently, Equation 1 is H-U-M-L stable. □

5. An Example

Consider the following Φ -HFOIDDS
D 0 + 0.4 , 0.7 , t 2 H v ( t ) + 3 I 0 + 0.7 , t 2 v ( t ) 3 I 0 + 0.8 , t 2 v ( t ) = 1 25 I 0 + 0.7 , t 2 v 2 ( t 1 ) 1 + v 2 ( t 1 ) + arctan ( v ( t ) ) I 0 + 1 0.82 , t 2 v ( 0 ) = v 0 , v ( t ) = 0 , t [ 1 , 0 ] ,
and the inequality
D 0 + 0.4 , 0.7 , t 2 H v ( t ) + 3 I 0 + 0.7 , t 2 v ( t ) 3 I 0 + 0.8 , t 2 v ( t ) 1 25 I 0 + 0.7 , t 2 f ( t , v ( t ) , v ( t 1 ) ) ϵ E ( 1.1 , 1.2 ) ( 3 , 3 ) .
Let σ = 0.4 , ξ = 0.7 . Then ϑ = σ + ξ ( 1 σ ) = 0.82 , Φ ( t ) = t 2 , ξ 1 = 0.7 , ξ 2 = 0.8 , μ 1 = μ 2 = 3 , g ( · ) = 1 , f ( · , v ( · ) , v ( g ( · ) ) ) = 1 25 v 2 ( · 1 ) 1 + v 2 ( · 1 ) + arctan ( v ( · ) ) , and L f = 1 25 . Thus 2 L f = 2 25 .
We want to verify that f ( · , v ( · ) , v ( g ( · ) ) ) satisfies ( H 2 ) :
1 25 v 1 2 ( · 1 ) 1 + v 1 2 ( · 1 ) + 1 25 arctan ( v 1 ) 1 25 v 2 2 ( · 1 ) 1 + v 2 2 ( · 1 ) 1 25 arctan ( v 2 ) 1 25 v 1 2 ( · 1 ) 1 + v 1 2 ( · 1 ) 1 25 v 2 2 ( · 1 ) 1 + v 2 2 ( · 1 ) + 1 25 arctan ( v 1 ) 1 25 arctan ( v 2 ) 1 25 ( v 1 v 2 ) + 1 25 ( arctan ( z ) ) ( v 1 v 2 ) 1 25 ( v 1 v 2 ) + 1 25 1 1 + z 2 ( v 1 v 2 ) 1 25 ( v 1 v 2 ) + 1 25 ( v 1 v 2 ) 2 25 | v 1 v 2 | ,
in which v 1 z v 2 , and thus f is a contraction. In view of hypothesis ( H 3 ) , we find that
Ω = 2 25 Γ ( 0.82 ) E ( 1.1 , 1.2 ) , 1.82 ( 3 , 3 ) = 2 25 Γ ( 0.82 ) l = 0 l 1 + l 2 = l l l 1 , l 2 3 l 1 3 l 2 Γ ( 1.1 l 1 + 1.2 l 2 + 1.82 ) .
Applying l 1 + l 2 = l l l 1 , l 2 = 3 l and 3 l 1 3 l 2 Γ ( 1.1 l 1 + 1.2 l 2 + 1.82 ) 3 l Γ ( l + 1.82 ) , we find that
Ω 2 25 Γ ( 0.82 ) l = 0 3 l Γ ( l + 1.82 ) < 1 .
Thus, by Theorem 1, Equation (8) has a unique solution and also is H-U-M-L stable with
| v ( t ) w ( t ) | C E ( 1.1 , 1.2 ) ϵ E ( 1.1 , 1.2 ) ( 3 , 3 ) , t [ 1 , 1 ] ,
where C E ( 1.1 , 1.2 ) = E ( 1.1 , 1.2 6 25 , 6 25 .

6. Concluding Remarks

In this paper, we discuss the existence and uniqueness of the Φ -HFOIDDS. Furthermore, we study the H-U-M-L stability of Φ -HFOIDDS. The main findings are obtained through the multivariate Mittag–Leffler function, the Banach contraction principle, and the Picard operator method, as well as generalized Gronwall’s inequality. Moreover, an illustrative example is provided to demonstrate the effectiveness of the theoretical results. Our outcomes obtained are new and extend the existing literature on this topic. In the future, this result could be extended to investigate the H-U-M-L stability for a class of Φ -HFOIDDS with impulsive conditions.

Author Contributions

Conceptualization, E.M.E.; Methodology, R.V., W.M.A. and E.M.E.; Software, R.V. and E.M.E.; Formal analysis, R.V.; Investigation, W.M.A.; Data curation, R.V.; Writing—original draft, E.M.E.; Writing—review & editing, R.V. The authors participated equally in this work. All authors have read and agreed to the published version of the manuscript.

Funding

The research received no external funding.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest in this work.

References

  1. Hussain, S.; Tunc, O.; Rahman, G.u.; Khan, H.; Nadia, E. Mathematical analysis of stochastic epidemic model of MERS-corona & application of ergodic theory. Math. Comput. Simul. 2023, 207, 130–150. [Google Scholar] [CrossRef]
  2. Khan, H.; Khan, Z.A.; Tajadodi, H.; Khan, A. Existence and data-dependence theorems for fractional impulsive integro-differential systems. Adv. Differ. Equ. 2020, 458, 1–11. [Google Scholar] [CrossRef]
  3. Liu, P.; Huang, X.; Zarin, R.; Cui, T.; Din, A. Modeling and numerical analysis of a fractional order model for dual variants of SARS-CoV-2. Alex. Eng. J. 2023, 65, 427–442. [Google Scholar] [CrossRef]
  4. Garcia-Aspeitia, M.A.; Fernandez-Anaya, G.; Hernandez-Almada, A.; Leon, G.; Magana, J. Cosmology under the fractional calculus approach. Mon. Not. R. Astron. Soc. 2022, 517, 4813–4826. [Google Scholar] [CrossRef]
  5. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  6. Machado, J.A.T.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 2010, 11. [Google Scholar]
  7. Hermann, R. Fractional Calculus: An Introduction For Physicists; World Scientific: Singapore, 2011. [Google Scholar]
  8. Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Field and Media, Nonlinear Physical Science; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
  9. Din, A.; Li, Y.; Khan, F.M.; Khan, Z.U.; Liu, P. On analysis of fractional order mathematical model of Hepatitis B using Atangana-Baleanu Caputo (ABC) derivative. Fractals 2022, 30, 2022. [Google Scholar] [CrossRef]
  10. Din, A.; Li, Y.; Yusuf, A.; Ali, A.I. Caputo type fractional operator applied to Hepatitis B system. Fractals 2022, 30, 2022. [Google Scholar] [CrossRef]
  11. Liu, P.; Din, A.; Zarin, R. Numerical dynamics and fractional modeling of hepatitis B virus model with non-singular and non-local kernels. Results Phys. 2022, 39, 105757. [Google Scholar] [CrossRef]
  12. Liu, P.; Rahman, M.U.; Din, A. Fractal fractional based transmission dynamics of COVID-19 epidemic model. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 1852–1869. [Google Scholar] [CrossRef]
  13. Ahmad, Z.; Bonanomi, G.; di Serafino, D.; Giannino, F. Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag-Leffler kernel. Appl. Numer. Math. 2023, 185, 446–465. [Google Scholar] [CrossRef]
  14. Hasin, F.; Ahmad, Z.; Ali, F.; Khan, N.; Khan, I.; Eldin, S.M. Impact of nanoparticles on vegetable oil as a cutting fluid with fractional ramped analysis. Sci. Rep. 2023, 13, 7140. [Google Scholar] [CrossRef]
  15. Khan, N.; Ahmad, Z.; Ahmad, H.; Tchier, F.; Zhang, X.Z.; Murtaza, S. Dynamics of chaotic systems based on image encryption through fractal-fractional operators of non-local kernels. AIP Adv. 2022, 12, 2022. [Google Scholar] [CrossRef]
  16. Khan, M.; Ahmad, Z.; Ali, F.; Khan, N.; Khan, I.; Nisar, K.S. Dynamics of two-step reversible enzymatic reaction under fractional derivative with Mittag-Leffler Kernel. PLoS ONE 2023, 18, e0277806. [Google Scholar] [CrossRef] [PubMed]
  17. Khan, N.; Ali, F.; Ahmad, Z.; Murtaza, S.; Ganie, A.H.; Khan, I.; Eldin, S.M. A time fractional model of a Maxwell nanofluid through a channel flow with applications in grease. Sci. Rep. 2023, 13, 4428. [Google Scholar] [CrossRef] [PubMed]
  18. Sousa, J.V.C.; Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. 2018, 60, 72–91. [Google Scholar] [CrossRef]
  19. Oliveira, E.C.; Sousa, J.V.C. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef]
  20. Sousa, J.V.C.; Oliveira, E.C. Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 2018, 81, 50–56. [Google Scholar] [CrossRef]
  21. Abdo, M.S.; Panchal, S.K. Fractional integro-differential equations involving ψ-Hilfer fractional derivative. Adv. Appl. Math. Mech. 2019, 11, 338–359. [Google Scholar] [CrossRef]
  22. Li, C. Existence for a nonlinear integro-differential equation with Hilfer fractional derivative. J. Integral Equ. Appl. 2025, 37, 91–99. [Google Scholar] [CrossRef]
  23. Lemnaouar, M.R. Existence and k-Mittag-Leffler-Ulam stabilities of a Volterra integro-differential equation via (k,ϱ)-Hilfer fractional derivative. Math. Methods Appl. Sci. 2025, 48, 4723–4739. [Google Scholar] [CrossRef]
  24. Faizi, R. Existence and stability results for a fractional integro-differential equation with Hilfer derivatives. Bol. Soc. Paran. Mat. 2025, 43, 1–16. [Google Scholar]
  25. Li, C.; Saadati, R.; Srivastava, R.; Beaudin, J. On the boundary value problem of nonlinear fractional integro-differential equations. Mathematics 2022, 10, 1971. [Google Scholar] [CrossRef]
  26. Cimen, E.; Yatar, S. Numerical solution of Volterra integro-differential equation with delay. J. Math. Comput Sci. 2020, 20, 255–263. [Google Scholar] [CrossRef]
  27. Morosanu, G.; Petrusel, A. On a delay integro-differential equation in Banach space. Discret. Contin. Dyn. Syst.-Ser. S 2023, 16, 2023. [Google Scholar] [CrossRef]
  28. Graef, J.R.; Tunc, C.; Sengun, M.; Tunc, O. The stability of nonlinear delay integro-differential equations in the sense of Hyers-Ulam. Nonautonomous Dyn. Syst. 2023, 10, 20220169. [Google Scholar] [CrossRef]
  29. Bohner, M.; Hristova, S. Stability for generalized Caputo proportional fractional delay integro-differential equations. Bound. Value Probl. 2022, 1, 15. [Google Scholar] [CrossRef]
  30. Tunc, C.; Alshammari, F.S.; Akyildiz, F.T. On the existence of solutions and Ulam-type stability for a nonlinear ψ-Hilfer fractional-order delay integro-differential equation. Fractal Fract. 2025, 9, 409. [Google Scholar] [CrossRef]
  31. Liu, K.; Wang, J.; O’Regan, D. Ulam-Hyers-Mittage-Leffler stability for ψ-Hilfer fractional-order delay differential equations. Adv. Differ. Equ. 2019, 1, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Vivek, R.; Abdelfattah, W.M.; Elsayed, E.M. Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative. Axioms 2025, 14, 629. https://doi.org/10.3390/axioms14080629

AMA Style

Vivek R, Abdelfattah WM, Elsayed EM. Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative. Axioms. 2025; 14(8):629. https://doi.org/10.3390/axioms14080629

Chicago/Turabian Style

Vivek, Ravichandran, Waleed Mohammed Abdelfattah, and Elsayed Mohamed Elsayed. 2025. "Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative" Axioms 14, no. 8: 629. https://doi.org/10.3390/axioms14080629

APA Style

Vivek, R., Abdelfattah, W. M., & Elsayed, E. M. (2025). Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative. Axioms, 14(8), 629. https://doi.org/10.3390/axioms14080629

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop