Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative
Abstract
1. Introduction
- For the first time in the literature, the existence and H-U-M-L stability for -HFOIDDS is investigated.
- A new set of sufficient conditions is established for the existence and H-U-M-L stability for -HFOIDDS 1.
- Our main technique relies on the Picard operator method, and the generalized Gronwall’s inequality for the -Hilfer derivative is efficiently used to establish the novel results.
- An example is presented to verify the considered theoretical results.
2. Prerequisites
- , where is the fixed point set of ;
- the sequence converges to for every .
3. Existence and Uniqueness of Solutions
- The functions , , with and .
- There is a constant such that
- We have the inequality
4. Stability Theory
- , ,
- , .
5. An Example
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hussain, S.; Tunc, O.; Rahman, G.u.; Khan, H.; Nadia, E. Mathematical analysis of stochastic epidemic model of MERS-corona & application of ergodic theory. Math. Comput. Simul. 2023, 207, 130–150. [Google Scholar] [CrossRef]
- Khan, H.; Khan, Z.A.; Tajadodi, H.; Khan, A. Existence and data-dependence theorems for fractional impulsive integro-differential systems. Adv. Differ. Equ. 2020, 458, 1–11. [Google Scholar] [CrossRef]
- Liu, P.; Huang, X.; Zarin, R.; Cui, T.; Din, A. Modeling and numerical analysis of a fractional order model for dual variants of SARS-CoV-2. Alex. Eng. J. 2023, 65, 427–442. [Google Scholar] [CrossRef]
- Garcia-Aspeitia, M.A.; Fernandez-Anaya, G.; Hernandez-Almada, A.; Leon, G.; Magana, J. Cosmology under the fractional calculus approach. Mon. Not. R. Astron. Soc. 2022, 517, 4813–4826. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Machado, J.A.T.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 2010, 11. [Google Scholar]
- Hermann, R. Fractional Calculus: An Introduction For Physicists; World Scientific: Singapore, 2011. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Field and Media, Nonlinear Physical Science; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Din, A.; Li, Y.; Khan, F.M.; Khan, Z.U.; Liu, P. On analysis of fractional order mathematical model of Hepatitis B using Atangana-Baleanu Caputo (ABC) derivative. Fractals 2022, 30, 2022. [Google Scholar] [CrossRef]
- Din, A.; Li, Y.; Yusuf, A.; Ali, A.I. Caputo type fractional operator applied to Hepatitis B system. Fractals 2022, 30, 2022. [Google Scholar] [CrossRef]
- Liu, P.; Din, A.; Zarin, R. Numerical dynamics and fractional modeling of hepatitis B virus model with non-singular and non-local kernels. Results Phys. 2022, 39, 105757. [Google Scholar] [CrossRef]
- Liu, P.; Rahman, M.U.; Din, A. Fractal fractional based transmission dynamics of COVID-19 epidemic model. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 1852–1869. [Google Scholar] [CrossRef]
- Ahmad, Z.; Bonanomi, G.; di Serafino, D.; Giannino, F. Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag-Leffler kernel. Appl. Numer. Math. 2023, 185, 446–465. [Google Scholar] [CrossRef]
- Hasin, F.; Ahmad, Z.; Ali, F.; Khan, N.; Khan, I.; Eldin, S.M. Impact of nanoparticles on vegetable oil as a cutting fluid with fractional ramped analysis. Sci. Rep. 2023, 13, 7140. [Google Scholar] [CrossRef]
- Khan, N.; Ahmad, Z.; Ahmad, H.; Tchier, F.; Zhang, X.Z.; Murtaza, S. Dynamics of chaotic systems based on image encryption through fractal-fractional operators of non-local kernels. AIP Adv. 2022, 12, 2022. [Google Scholar] [CrossRef]
- Khan, M.; Ahmad, Z.; Ali, F.; Khan, N.; Khan, I.; Nisar, K.S. Dynamics of two-step reversible enzymatic reaction under fractional derivative with Mittag-Leffler Kernel. PLoS ONE 2023, 18, e0277806. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Ali, F.; Ahmad, Z.; Murtaza, S.; Ganie, A.H.; Khan, I.; Eldin, S.M. A time fractional model of a Maxwell nanofluid through a channel flow with applications in grease. Sci. Rep. 2023, 13, 4428. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.V.C.; Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Oliveira, E.C.; Sousa, J.V.C. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, E.C. Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 2018, 81, 50–56. [Google Scholar] [CrossRef]
- Abdo, M.S.; Panchal, S.K. Fractional integro-differential equations involving ψ-Hilfer fractional derivative. Adv. Appl. Math. Mech. 2019, 11, 338–359. [Google Scholar] [CrossRef]
- Li, C. Existence for a nonlinear integro-differential equation with Hilfer fractional derivative. J. Integral Equ. Appl. 2025, 37, 91–99. [Google Scholar] [CrossRef]
- Lemnaouar, M.R. Existence and k-Mittag-Leffler-Ulam stabilities of a Volterra integro-differential equation via (k,ϱ)-Hilfer fractional derivative. Math. Methods Appl. Sci. 2025, 48, 4723–4739. [Google Scholar] [CrossRef]
- Faizi, R. Existence and stability results for a fractional integro-differential equation with Hilfer derivatives. Bol. Soc. Paran. Mat. 2025, 43, 1–16. [Google Scholar]
- Li, C.; Saadati, R.; Srivastava, R.; Beaudin, J. On the boundary value problem of nonlinear fractional integro-differential equations. Mathematics 2022, 10, 1971. [Google Scholar] [CrossRef]
- Cimen, E.; Yatar, S. Numerical solution of Volterra integro-differential equation with delay. J. Math. Comput Sci. 2020, 20, 255–263. [Google Scholar] [CrossRef]
- Morosanu, G.; Petrusel, A. On a delay integro-differential equation in Banach space. Discret. Contin. Dyn. Syst.-Ser. S 2023, 16, 2023. [Google Scholar] [CrossRef]
- Graef, J.R.; Tunc, C.; Sengun, M.; Tunc, O. The stability of nonlinear delay integro-differential equations in the sense of Hyers-Ulam. Nonautonomous Dyn. Syst. 2023, 10, 20220169. [Google Scholar] [CrossRef]
- Bohner, M.; Hristova, S. Stability for generalized Caputo proportional fractional delay integro-differential equations. Bound. Value Probl. 2022, 1, 15. [Google Scholar] [CrossRef]
- Tunc, C.; Alshammari, F.S.; Akyildiz, F.T. On the existence of solutions and Ulam-type stability for a nonlinear ψ-Hilfer fractional-order delay integro-differential equation. Fractal Fract. 2025, 9, 409. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; O’Regan, D. Ulam-Hyers-Mittage-Leffler stability for ψ-Hilfer fractional-order delay differential equations. Adv. Differ. Equ. 2019, 1, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivek, R.; Abdelfattah, W.M.; Elsayed, E.M. Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative. Axioms 2025, 14, 629. https://doi.org/10.3390/axioms14080629
Vivek R, Abdelfattah WM, Elsayed EM. Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative. Axioms. 2025; 14(8):629. https://doi.org/10.3390/axioms14080629
Chicago/Turabian StyleVivek, Ravichandran, Waleed Mohammed Abdelfattah, and Elsayed Mohamed Elsayed. 2025. "Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative" Axioms 14, no. 8: 629. https://doi.org/10.3390/axioms14080629
APA StyleVivek, R., Abdelfattah, W. M., & Elsayed, E. M. (2025). Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative. Axioms, 14(8), 629. https://doi.org/10.3390/axioms14080629