An Optimal Inequality for Warped Product Pointwise Semi-Slant Submanifolds in Complex Space Forms
Abstract
:1. Introduction
2. Some Basics
3. Optimal Inequalities
- (i)
- The GN δ-C-curvature satisfies
- (ii)
- The GN δ-C-curvature satisfies
- (i)
- For , we have the following possibilities:
- (a) (b) .
- Since , in these two cases,
- (ii)
- For , we have the following possibilities:
- (a) ; (b) ;
- (c) .
- Clearly, for (a) and (c) we have and for (b) .
- (iii)
- For :
- (a) When , we have
- (b) When , let and
4. Some Consequences
- (i)
- The GN δ-C-curvature satisfies
- (ii)
- The GN δ-C-curvature satisfies
- (i)
- The GN δ-C-curvature satisfies
- (ii)
- The GN δ-C-curvature satisfies
- (i)
- The GN δ-C-curvature satisfies
- (ii)
- The GN δ-C-curvature satisfies
5. Examples
6. Conclusions and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bishop, R.L.; O’Neill, B. Manifolds of negative curvature. Trans. Amer. Math. Soc. 1967, 145, 1–45. [Google Scholar] [CrossRef]
- Ali, A.; Alkhaldia, A.H.; Lee, J.W.; Othmanc, W.A.M. Classification of Warped product pointwise semi-slant submanifolds in complex space forms. Filomat 2019, 33, 5273–5290. [Google Scholar] [CrossRef]
- Mihai, A. Warped product submanifolds in generalized complex space forms. Acta Math. Acad. Paedagog. Nyí Regyháziensis 2005, 21, 79–87. [Google Scholar]
- Nash, J.F. The imbedding problem for Riemannian manifolds. Ann. Math. 1956, 63, 20–63. [Google Scholar] [CrossRef]
- Chen, B.-Y. Some pinching and classification theorems for minimal Submanifolds. Arch. Math. 1993, 60, 568–578. [Google Scholar] [CrossRef]
- Chen, B.-Y. Pseudo-Riemannian Geometry, δ-Invariants and Applications; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Casorati, F. Mesure de la courbure des surfaces suivant l’idée commune. Ses rapports avec les mesures de courbure gaussienne et Moyenne. Acta Math. 1890, 14, 95–110. [Google Scholar] [CrossRef]
- Aquib, M. Some inequalities for statistical submanifolds of quaternion Kaehler-like statistical space forms. Int. J. Geom. Methods Mod. Phys. 2019, 16, 17. [Google Scholar]
- Decu, S.; Haesen, S.; Verstraelen, L. Optimal inequalities involving Casorati curvatures. Bull. Transilv. Univ. Braşov Ser. B 2007, 14, 85–93. [Google Scholar]
- He, G.; Liu, H.; Zhang, L. Optimal inequalities for the Casorati curvatures of submanifolds in generalized space forms endowed with semi-symmetric non-metric connections. Symmetry 2016, 8, 113. [Google Scholar] [CrossRef]
- Lee, C.W.; Lee, J.W.; Vîlcu, G.E. Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms. Adv. Geom. 2017, 17, 355–362. [Google Scholar] [CrossRef]
- Lee, J.W.; Vîlcu, G.E. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space forms. Taiwanese J. Math. 2015, 19, 691–702. [Google Scholar] [CrossRef]
- Park, K.S. Inequalities for the Casorati curvatures of real hypersurfaces in some Grassmannians. Taiwanese J. Math. 2018, 22, 63–77. [Google Scholar] [CrossRef]
- Vîlcu, G.E. Horizontally conformal submersions from CR-submanifolds of locally conformal Kaehler manifolds. Med. J. Math. 2020, 17, 26. [Google Scholar]
- Zhang, P.; Zhang, L. Remarks on inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms. J. Inequal. Appl. 2014, 452. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L. Inequalities for Casorati curvatures of submanifolds in real space forms. Adv. Geom. 2016, 16, 329–335. [Google Scholar] [CrossRef]
- Decu, S.; Haesen, S.; Verstraelen, L. Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal. Pure Appl. Math. 2008, 9, 79. [Google Scholar]
- Aquib, M.; Lee, W.; Vîlcu, G.-E.; Yoon, D.W. Classification of Casorati ideal Lagrangian submanifolds in complex space forms. Differ. Geom. Appl. 2019, 63, 30–49. [Google Scholar] [CrossRef]
- Aquib, M.; Shahid, M.H. Generalized normalized δ-Casorati curvature for statistical submanifolds in quaternion Kaehler-like statistical space forms. J. Geom. 2018, 109, 13. [Google Scholar] [CrossRef]
- Chen, B.-Y. Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tôhoku Math. J. 1997, 49, 277–297. [Google Scholar] [CrossRef]
- Chen, B.-Y. Lagrangian submanifolds in para-Kähler manifolds. Nonlinear Anal. 2010, 73, 3561–3571. [Google Scholar] [CrossRef]
- Chen, B.-Y. Differential Geometry of Warped Product Manifolds and Submanifolds; World Scientific: Hackensack, NJ, USA, 2017. [Google Scholar]
- Chen, B.-Y.; Dillen, F. Optimal general inequalities for Lagrangian submanifolds in complex space forms. J. Math. Anal. Appl. 2011, 379, 229–239. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Yildirim, H. Classification of ideal submanifolds of real space forms with type number ≤ 2. J. Geom. Phys. 2015, 92, 167–180. [Google Scholar] [CrossRef]
- Dillen, F.; Fastenakels, J. On an inequality of Oprea for Lagrangian submanifolds. Cent. Eur. J. Math. 2009, 7, 140–144. [Google Scholar] [CrossRef]
- Haesen, S.; Kowalczyk, D.; Verstraelen, L. On the extrinsic principal directions of Riemannian submanifolds. Note Mat. 2009, 29, 41–53. [Google Scholar]
- Vılcu, G.E. B.-Y. Chen inequalities for slant submanifolds in quaternionic space forms. Turk. J. Math. 2010, 34, 115–128. [Google Scholar]
- Oprea, T. Chen’s inequality in the Lagrangian case. Colloq. Math. 2007, 108, 163–169. [Google Scholar] [CrossRef]
- Vîlcu, G.E. An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature. J. Math. Ana. App. 2018, 465, 1209–1222. [Google Scholar] [CrossRef]
- Sahin, B. Warped product pointwise semi-slant submanifolds of Kaehler manifold. Port. Math. 2013, 70, 251–268. [Google Scholar] [CrossRef]
- Deszcz, R.; Verstraelen, L.; Vrancken, L. The symmetry of warped product space-times. Gen. Relat. Gravit. 1991, 23, 671–681. [Google Scholar] [CrossRef]
- Chojnacka-Dulas, J.; Deszcz, R.; Głogowska, M.; Prvanović, M. On warped product manifolds satisfying some curvature conditions. J. Geom. Phys. 2013, 74, 328–341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquib, M. An Optimal Inequality for Warped Product Pointwise Semi-Slant Submanifolds in Complex Space Forms. Axioms 2025, 14, 213. https://doi.org/10.3390/axioms14030213
Aquib M. An Optimal Inequality for Warped Product Pointwise Semi-Slant Submanifolds in Complex Space Forms. Axioms. 2025; 14(3):213. https://doi.org/10.3390/axioms14030213
Chicago/Turabian StyleAquib, Md. 2025. "An Optimal Inequality for Warped Product Pointwise Semi-Slant Submanifolds in Complex Space Forms" Axioms 14, no. 3: 213. https://doi.org/10.3390/axioms14030213
APA StyleAquib, M. (2025). An Optimal Inequality for Warped Product Pointwise Semi-Slant Submanifolds in Complex Space Forms. Axioms, 14(3), 213. https://doi.org/10.3390/axioms14030213