Decay Estimates for a Lamé Inverse Problem Involving Source and Damping Term with Variable-Exponent Nonlinearities
Abstract
1. Introduction
2. Preliminaries
3. Energy Decay
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shahrouzi, M. General decay and blow up of solutions for a class of inverse problem with elasticity term and variable-exponent nonlinearities. Math. Methods Appl. Sci. 2022, 45, 1864–1878. [Google Scholar] [CrossRef]
- Gür, Ş.; Yaman, M.; Yılmaz, Y. Finite time blow up of solutions to an inverse problem for a quasilinear parabolic equation with power nonlinearity. J. Nonlinear Sci. Appl. 2016, 9, 1902–1910. [Google Scholar] [CrossRef]
- Isakov, V. Inverse Source Problems; Math Surveys and Monographs Series; AMS: Providence, RI, USA, 1990. [Google Scholar]
- Ramm, A.G. Inverse Problems; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Yaman, M. Long-time behaviour of solutions to inverse problem for higher-order parabolic equation. Sak. Univ. J. Sci. 2019, 23, 696–699. [Google Scholar] [CrossRef]
- Yaman, M. Doğrusal parabolik denklem için ters problemin çözümünün uzun zaman davranışı. SAU Fen Bilim. EnstitüSü Derg. 2003, 7, 73–75. [Google Scholar]
- Yaman, M.; Gözükızıl, Ö.F. St.-Venant Type Estim. Wave Equation. SAU Fen Bilim. Enstitüsü Derg. 2002, 6, 106–108. [Google Scholar]
- Yaman, M.; Gözükızıl, Ö.F. Asymptotic behaviour of the solutions of inverse problems for pseudo-parabolic equations. Appl. Math Comput. 2004, 154, 69–74. [Google Scholar] [CrossRef]
- Lagnese, J.E.; Lions, J.L. Modeling Analysis and Control of Thin Plates; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Isakov, V. On Inverse Problems for Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Eden, A.; Kalantarov, V.K. On global behavior of solutions to an inverse problem for nonlinear parabolic equations. J. Math. Anal. Appl. 2005, 307, 120–133. [Google Scholar] [CrossRef]
- Shahrouzi, M. Asymptotic stability and blowup of solutions for a class of viscoelastic inverse problem with boundary feedback. Math. Methods Appl. Sci. 2016, 39, 2368–2379. [Google Scholar] [CrossRef]
- Shahrouzi, M. On behavior of solutions to a class of nonlinear hyperbolic inverse source problem. Acta. Math. Sin. Engl. Ser. 2016, 32, 683–698. [Google Scholar] [CrossRef]
- Gözükızıl, Ö.F.; Yaman, M. A note on the unique solvability of an inverse problem with integral overdetermination. Appl. Math. E-Notes 2008, 8, 223–230. [Google Scholar]
- Zhao, J. Existence and nonexistence of solutions for ut = div(|∇u|p-2∇u) + f(∇u,u,x,t). J. Math. Anal. Appl. 1993, 172, 130–146. [Google Scholar] [CrossRef]
- Prilepko, A.I.; Orlovskii, D.G.; Vasin, I.A. Methods for Solving Inverse Problems in Mathematical Physics; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Riganti, R.; Savateev, E. Solution of an inverse problem for the nonlinear heat equation. Commun. Partial. Differ. Equ. 1994, 19, 1611–1628. [Google Scholar] [CrossRef]
- Vasin, I.A.; Kamynin, V.L. On the asymptotic behavior of solutions to inverse problems for parabolic equations. Sib. Math. J. 1997, 38, 642–662. [Google Scholar] [CrossRef]
- Al-Gharabli, M.M.; Al-Mahdi, A.M.; Messaoudi, S.A. New general decay result for a system of two singular nonlocal viscoelastic equations with general source terms and a wide class of relaxation functions. Bound. Value Probl. 2020, 2020, 170. [Google Scholar] [CrossRef]
- Park, S.H. General decay for a viscoelastic von Karman equation with delay and variable exponent nonlinearities. Bound. Value Probl. 2022, 23, 23. [Google Scholar] [CrossRef]
- Kakumani, B.K.; Yadav, S.P. Decay estimate in a viscoelastic plate equation with past history, nonlinear damping, and logarithmic nonlinearity. Bound. Value Probl. 2022, 2022, 95. [Google Scholar] [CrossRef]
- Mısır, Z.; Yaman, M. Blow up solution of inverse problem for nonlinear hyperbolic equation with variable-exponents. Filomat 2024, 38, 7479–7491. [Google Scholar] [CrossRef]
- Çetin, Ş.; Yakar, C.; Yılmaz, Y. Qualitative Outcomes on Monotone Iterative Technique and Quasilinearization Method on Time Scale. Axioms 2024, 13, 640. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Al-Gharabli, M.M.; Al-Mahdi, A.M. Energy decay and blow-up of solutions for a class of system of generalized nonlinear Klein-Gordon equations with source and damping terms. Math. Methods Appl. Sci. 2022, 45, 8389–8411. [Google Scholar] [CrossRef]
- Al-Mahdi, A.M.; Al-Gharabli, M.M.; Zahri, M. Theoretical and computational decay results for a memory type wave equation with variable- exponent nonlinearity. Math. Control Relat. Fields 2023, 13, 605–630. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Zhao, X.; Lv, Z. Existence and General Energy Decay of Solutions to a Coupled System of Quasi-Linear Viscoelastic Variable Coefficient Wave Equations with Nonlinear Source Terms. Axioms 2023, 12, 780. [Google Scholar] [CrossRef]
- Gür, Ş.; Yaman, M. Energy Decay and Continuous Dependence for Damped Semilinear Wave Equation. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 1601–1605. [Google Scholar] [CrossRef]
- Çelik, Z.S.; Gür, Ş.; Pişkin, E. On the decay of solutions of a viscoelastic wave equation with variable sources. Turk. J. Math. 2023, 47, 1288–1305. [Google Scholar] [CrossRef]
- Bayraktar, S.; Gür, Ş. Continuous dependence of solutions for damped improved Boussinesq equation. Turk. J. Math. 2020, 44, 334–341. [Google Scholar] [CrossRef]
- Uysal, M.E.; Gür, Ş. Continuous dependence of solutions to double dispersive equation with dissipative term. Hacet. J. Math. Stat. 2021, 50, 692–698. [Google Scholar] [CrossRef]
- Çelik, Z.S.; Gür, Ş. Continuous Dependence For Benjamin-Bona-Mahony-Burger Equation. Sak. Univ. J. Sci. 2018, 20, 1648–1650. [Google Scholar] [CrossRef]
- Kabataş, A. Sturm-Liouville Problems with Polynomially Eigenparameter Dependent Boundary Conditions. Sak. Univ. J. Sci. 2023, 27, 1235–1242. [Google Scholar] [CrossRef]
- Al-Mahdi, A.M.; Al-Gharabli, M.M.; Kafini, M. Asymptotic behavior of the wave equation solution with nonlinear boundary damping and source term of variable exponent-type. Mathematics 2024, 9, 30638–30654. [Google Scholar] [CrossRef]
- Al-Mahdi, A.M.; Al-Gharabli, M.M.; Tatar, N.E. On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results. AIMS Math. 2023, 8, 19971–19992. [Google Scholar] [CrossRef]
- Diening, L.; Petteri, H.; Hasto, P.; Ruzicka, M. Lebesgue and Sobolev spaces with variable exponents. Lect. Note Math. 2011, 1, 1–20. [Google Scholar]
- Edmunds, D.; Rakosnik, J. Sobolev embeddings with variable exponent. Stud Math. 2000, 143, 267–293. [Google Scholar] [CrossRef]
- Edmunds, D.; Rakosnik, J. Sobolev embeddings with variable exponent II. Math Nachr. 2002, 246, 53–67. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, D. On the spaces Lp(x) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, Q.H. Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 2003, 52, 1843–1852. [Google Scholar] [CrossRef]
- Piskin, E. Sobolev Uzayları; Seçkin: Ankara, Turkey, 2017. [Google Scholar]
Exponent Function | Initial Energy | Energy at , | Decay Behavior |
---|---|---|---|
1.000 | 0.350 | Exponential | |
1.000 | 0.270 | Faster decay due to heterogeneity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mısır, Z.; Yaman, M. Decay Estimates for a Lamé Inverse Problem Involving Source and Damping Term with Variable-Exponent Nonlinearities. Axioms 2025, 14, 424. https://doi.org/10.3390/axioms14060424
Mısır Z, Yaman M. Decay Estimates for a Lamé Inverse Problem Involving Source and Damping Term with Variable-Exponent Nonlinearities. Axioms. 2025; 14(6):424. https://doi.org/10.3390/axioms14060424
Chicago/Turabian StyleMısır, Zülal, and Metin Yaman. 2025. "Decay Estimates for a Lamé Inverse Problem Involving Source and Damping Term with Variable-Exponent Nonlinearities" Axioms 14, no. 6: 424. https://doi.org/10.3390/axioms14060424
APA StyleMısır, Z., & Yaman, M. (2025). Decay Estimates for a Lamé Inverse Problem Involving Source and Damping Term with Variable-Exponent Nonlinearities. Axioms, 14(6), 424. https://doi.org/10.3390/axioms14060424