Nonlinear Convection in an Inclined Porous Layer Saturated by Casson Fluid with a Magnetic Effect
Abstract
:1. Introduction
2. Basic Equations
2.1. Basic Flow
2.2. Linear Stability Analysis
3. Nonlinear Stability Analysis
4. Derivation of the Coupling Parameter
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Charm, S.E. The direct determination of shear stress-shear rate behavior of foods in the presence of a yield stress. J. Food Sci. 1963, 28, 107–113. [Google Scholar] [CrossRef]
- Chevalley, J. Rheology of chocolate. J. Texture Stud. 1975, 6, 177–196. [Google Scholar] [CrossRef]
- Majeed, A.; Mahmood, R.; Shahzad, H.; Pasha, A.; Raizah, Z.A.; Hosham, H.; Reddy, D.; Hafeez, M. Heat and mass transfer characteristics in MHD Casson fluid flow over a cylinder in a wavy channel: Higher-order FEM computations. Case Stud. Therm. Eng. 2023, 42, 102730. [Google Scholar] [CrossRef]
- Astarita, G.; Marucci, G. Principles of Non-Newtonian Fluid Mechanics; McGraw-Hill: London, UK; New York, NY, USA, 1974. [Google Scholar]
- Fridtjov, I. Rheology and Non-Newtonian Fluids; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Patel, M.; Timol, M. Non-Newtonian Fluid Models and Boundary Layer Flow; LAP Lambert Academic Publishing: Saarbrucken, Germany, 2020. [Google Scholar]
- Wildemuth, C.R.; Williams, M.C. A new interpretation of viscosity and yield stress in dense slurries: Coal and other irregular particles. Rheol. Acta 1985, 24, 75–91. [Google Scholar] [CrossRef]
- Steiner, E.H. A new rheological relationship to express the flow properties of melted chocolate. Int. Choc. Rev. 1958, 13, 290. [Google Scholar]
- Casson, N. Flow equation for pigment-oil suspensions of the printing ink-type. Rheol. Disperse Syst. 1959, 84–104. [Google Scholar]
- Steiner, E.H. An Investigation into the Validity of the Casson Relationship for Melted Chocolate at Low Rates of Shear and at Various Temperatures. Rev. Intern. Chocolat 1962, 17, 150. [Google Scholar]
- Heimann, W.; Fincke, A. Rheometry of chocolate-the flow equation of Casson and its application to rheometry of chocolate. Z Lebensm. Untersuch. Forsch. 1962, 117, 93. [Google Scholar]
- Heimann, W.; Fincke, A. Measuring the flow limits and their calculation from the Casson equation. Z Lebensm. Untersuch. Forsch. 1962, 117, 225. [Google Scholar] [CrossRef]
- Heimann, W.; Fincke, A. Application of a modified Casson equation to milk chocolates and cocoa pastes. Z Lebensm. Untersuch. Forsch. 1962, 117, 297. [Google Scholar] [CrossRef]
- Office International du Cacao et du Chocolat. Viscosity of chocolate-determination of Casson yield value and Casson plastic viscosity. Rev. Int. Choc. 1973, 28, 223–225. [Google Scholar]
- Chertovskih, R.; Chimanski, E.V.; Rempel, E.L. Route to hyperchaos in Rayleigh-Bénard convection. Europhys. Lett. 2015, 112, 14001. [Google Scholar] [CrossRef]
- Aghighi, M.S.; Ammar, A.; Metivier, C.; Gharagozlu, M. Rayleigh-Bénard convection of Casson fluids. Int. J. Therm. Sci. 2018, 127, 79–90. [Google Scholar] [CrossRef]
- Aghighi, M.S.; Ammar, A.; Masoumi, H.; Lanjabi, A. Rayleigh–Bénard convection of a viscoplastic liquid in a trapezoidal enclosure. Int. J. Mech. Sci. 2020, 180, 105630. [Google Scholar] [CrossRef]
- Gupta, U.; Sharma, J.; Devi, M. Double-diffusive instability of Casson nanofluids with numerical investigations for blood-based fluid. Eur. Phys. J. Spec. Top. 2021, 230, 1435–1445. [Google Scholar] [CrossRef]
- Kudenatti, R.B. The onset of instability in a hydromagnetic channel flow of Casson fluid: The accurate solutions. Appl. Math. Comput. 2023, 436, 127475. [Google Scholar] [CrossRef]
- Reddy, G.; Ragoju, R.; Shekhar, S. Thermohaline convection of a Casson fluid in a porous layer: Linear and non-linear stability analyses. Phys. Fluids 2023, 35, 094101. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: New York, NY, USA, 2006; Volume 3, pp. 629–982. [Google Scholar]
- Bories, S.A.; Combarnous, M.A. Natural convection in a sloping porous layer. J. Fluid Mech. 1973, 57, 63–79. [Google Scholar] [CrossRef]
- Weber, J.E. Thermal convection in a tilted porous layer. Int. J. Heat Mass Transf. 1975, 18, 474–475. [Google Scholar] [CrossRef]
- Caltagirone, J.P.; Bories, S. Solutions and stability criteria of natural convective flow in an inclined porous layer. J. Fluid Mech. 1985, 155, 267–287. [Google Scholar] [CrossRef]
- Rees, D.A.S.; Bassom, A.P. The onset of Darcy-Bénard convection in an inclined layer heated from below. Acta Mech. 2000, 144, 103–118. [Google Scholar] [CrossRef]
- Rees, D.A.S.; Barletta, A. Linear instability of the isoflux Darcy—Bénard problem in an inclined porous layer. Transp. Porous Media 2011, 87, 665–678. [Google Scholar] [CrossRef]
- Barletta, A.; Storesletten, L. Thermoconvective instabilities in an inclined porous channel heated from below. Int. J. Heat Mass Transf. 2011, 54, 2724–2733. [Google Scholar] [CrossRef]
- Ragoju, R. Influence of a magnetic field on double-diffusive convection in an inclined porous layer. Heat Transf. 2024, 53, 2350–2368. [Google Scholar] [CrossRef]
- Reddy, G.S.K.; Ravi, R.; Dey, P. Matta, A. Nonlinear magneto convection in an inclined porous layer with artificial neural network prediction. Math. Methods Appl. Sci. 2022, 48, 7025–7036. [Google Scholar] [CrossRef]
Longitudinal | Transverse | |||
---|---|---|---|---|
β | Linear | Nonlinear | Linear | Nonlinear |
1 | 133.20556 | 132.67005 | 134.08742 | 132.77791 |
2 | 126.26565 | 125.73047 | 127.13676 | 125.84777 |
3 | 123.93615 | 123.40184 | 124.80346 | 123.52127 |
4 | 122.76824 | 122.23426 | 123.63355 | 122.35494 |
5 | 122.06584 | 121.53265 | 122.93069 | 121.65390 |
6 | 121.59757 | 121.06444 | 122.46149 | 121.18611 |
7 | 121.26309 | 120.72979 | 122.12635 | 120.85189 |
8 | 121.01175 | 120.47868 | 121.87467 | 120.60092 |
9 | 120.81611 | 120.28330 | 121.67885 | 120.40574 |
10 | 120.65959 | 120.12695 | 121.52220 | 120.24959 |
Longitudinal | Transverse | |||
---|---|---|---|---|
Ha2 | Linear | Nonlinear | Linear | Nonlinear |
0.1 | 44.00503 | 43.41344 | 44.93217 | 43.69553 |
0.5 | 51.41045 | 50.84891 | 52.28060 | 51.09554 |
1 | 60.11393 | 59.57206 | 60.95144 | 59.78933 |
1.5 | 68.39843 | 67.86650 | 69.22247 | 68.06296 |
2 | 76.38049 | 75.85356 | 77.20088 | 76.03394 |
2.5 | 84.13086 | 83.60625 | 84.95321 | 83.77351 |
3 | 91.69703 | 91.17256 | 92.52450 | 91.32863 |
3.5 | 99.11147 | 98.58603 | 99.94604 | 98.73236 |
4 | 106.39843 | 105.87119 | 107.24171 | 106.00885 |
4.5 | 113.57654 | 113.04676 | 114.42911 | 113.17648 |
5 | 120.65959 | 120.12695 | 121.52220 | 120.24959 |
Longitudinal | Transverse | |||
---|---|---|---|---|
γ | Linear | Nonlinear | Linear | Nonlinear |
00 | 118.82650 | 118.82644 | 120.21139 | 120.21129 |
100 | 120.65959 | 120.12696 | 122.93069 | 121.65390 |
200 | 126.45252 | 124.08725 | 131.96357 | 126.10461 |
300 | 137.20903 | 130.81974 | 150.95960 | 133.92953 |
400 | 155.11698 | 140.14676 | 193.34546 | 145.67348 |
500 | 184.86123 | 150.07675 | 425.98574 | 161.65865 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raju, S.S.K. Nonlinear Convection in an Inclined Porous Layer Saturated by Casson Fluid with a Magnetic Effect. Axioms 2025, 14, 384. https://doi.org/10.3390/axioms14050384
Raju SSK. Nonlinear Convection in an Inclined Porous Layer Saturated by Casson Fluid with a Magnetic Effect. Axioms. 2025; 14(5):384. https://doi.org/10.3390/axioms14050384
Chicago/Turabian StyleRaju, S. Suresh Kumar. 2025. "Nonlinear Convection in an Inclined Porous Layer Saturated by Casson Fluid with a Magnetic Effect" Axioms 14, no. 5: 384. https://doi.org/10.3390/axioms14050384
APA StyleRaju, S. S. K. (2025). Nonlinear Convection in an Inclined Porous Layer Saturated by Casson Fluid with a Magnetic Effect. Axioms, 14(5), 384. https://doi.org/10.3390/axioms14050384