Third-Order Fuzzy Subordination and Superordination on Analytic Functions on Punctured Unit Disk
Abstract
1. Introduction
2. Materials and Methods
- (i)
- (see Miller and Mocanu [22], p. 389);
- (ii)
- , (see Aqlan et al. [23]);
- (iii)
- (see El-Ashwah and Aouf [24]);
- (iv)
- (see El-Ashwah [25]).
3. Results
3.1. Third-Order Fuzzy Differential Subordination Advancements
3.2. Third-Order Fuzzy Differential Superordination Advancements
3.3. Sandwich-Type Advancements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oros, G.I.; Oros, G.; Güney, Ö. Introduction in third-order fuzzy differential subordination. Hacet. J. Math. Stat. 2024, 53, 1627–1641. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. ActaUniv. Apulensis 2012, 3, 55–64. [Google Scholar]
- Abdulnabi, F.F.; Al-Janaby, H.F.; Ghanim, F.; Alb Lupaș, A. Some results on third-order differential subordination and differential superordination for analytic functions using a fractional differential operator. Mathematics 2023, 11, 4021. [Google Scholar] [CrossRef]
- Rasheed, M.K.; Majeed, A.H. Admissible Classes of Seven-Parameter Mittag-Leffler Operator with Third-Order Differential Subordination Properties. Iraqi J. Sci. 2024, 65, 6576–6588. [Google Scholar] [CrossRef]
- Ahmed, L.T.; Juma, A.R.S. Third order differential subordination results for holomorphic functions involving convolution operator. AIP Conf. Proc. 2025, 3169, 070016. [Google Scholar] [CrossRef]
- Antonino, J.A.; Miller, S.S. Third-order differential inequalities and subordinations in the complex plane. Complex Var. Elliptic Equ. 2011, 56, 439–454. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Michig. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Atshan, W.G.; Hussain, K.O. Fuzzy Differential Superordination. Theory Appl. Math. Comput. Sci. 2017, 7, 27–38. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar]
- Oros, G.I.; Dzitac, S.; Bardac-Vlada, D.A. Introducing the Third-Order Fuzzy Superordination Concept and Related Results. Mathematics 2024, 12, 3095. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Alb Lupaș, A. A note on special fuzzy differential subordinations using generalized Sălăgean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1476–1483. [Google Scholar]
- Venter, A.O. On special fuzzy differential subordination using Ruscheweyh operator. An. Univ. Oradea Fasc. Mat. 2015, 22, 167–176. [Google Scholar]
- Thilagavathi, K. Fuzzy subordination and superordination results for certain subclasses of analytic functions associated with Srivastava-Attitya operator. Int. J. Pure Appl. Math. 2018, 118, 921–929. [Google Scholar]
- Alb Lupaș, A.; Shah, S.A.; Iambor, L.F. Fuzzy differential subordination and superordination results for q-analogue of multiplier transformation. AIMS Math. 2023, 8, 15569–15584. [Google Scholar] [CrossRef]
- Soren, M.M.; Cotîrlă, L.I. Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution. AIMS Math. 2024, 9, 21053–21078. [Google Scholar] [CrossRef]
- Silviya, I.R.; Muthunagai, K. Differential and fuzzy differential sandwich theorems involving quantum calculus operators. J. Niger. Soc. Phys. Sci. 2024, 6, 1832. [Google Scholar] [CrossRef]
- Moureh, A.H.; Al-Janaby, H.F. The admissible method for complex formula of operator on meromorphic functions. AIP Conf. Proc. 2024, 3036, 040028. [Google Scholar] [CrossRef]
- Ali, E.E.; Oros, G.I.; El-Ashwah, R.M.; Albalahi, A.M.; Ennaceur, M. Fuzzy Subordination Results for Meromorphic Functions Associated with Hurwitz–Lerch Zeta Function. Mathematics 2024, 12, 3721. [Google Scholar] [CrossRef]
- El-Ashwah, R.M.; Bulboacă, T. Sandwich results for p-valent meromorphic functions associated with Hurwitz-Lerch Zeta function. Tamsui Oxford J. Infor. Math. Sci. 2018, 32, 48–63. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Marcel Dekker Inc.: New York, NY, USA, 2000. [Google Scholar]
- Aqlan, E.; Jahangiri, J.M.; Kulkarni, S.R. Certain integral operators applied to p-valent functions. J. Nat. Geom. 2003, 24, 111–120. [Google Scholar]
- El-Ashwah, R.M.; Aouf, M.K. Applications of differential subordination on certain class of meromorphic p-valent functions associated with certain integral operator. Acta Univ. Apulensis 2012, 31, 53–64. [Google Scholar]
- El-Ashwah, R.M. Inclusion relationships properties for certain subclasses of meromorphic functions associated with Hurwitz-Lerech Zeta function. Acta Univ. Apulensis 2013, 34, 191–205. [Google Scholar]
- Khan, S.; Ro, J.-S.; Tchier, F.; Khan, N. Applications of Fuzzy Differential Subordination for a New Subclass of Analytic Functions. Axioms 2023, 12, 745. [Google Scholar] [CrossRef]
- Breaz, D.; Khan, S.; Tawfiq, F.M.O.; Tchier, F. Applications of Fuzzy Differential Subordination to the Subclass of Analytic Functions Involving Riemann–Liouville Fractional Integral Operator. Mathematics 2023, 11, 4975. [Google Scholar] [CrossRef]
- Kanwal, B.; Hussain, S.; Saliu, A. Fuzzy differential subordination related to strongly Janowski functions. Appl. Math. Sci. Eng. 2023, 31, 2170371. [Google Scholar] [CrossRef]
- Salih, D.A.; Juma, A.R.S.; Al-Fayadh, A. Fuzzy differential subordinations and superordinations for univalent functions involving linear operator. AIP Conf. Proc. 2023, 2834, 080022. [Google Scholar] [CrossRef]
- El-Emam, F.Z. Fuzzy Differential Subordinations for Univalent Functions Involving Rafid-Operator. J. Eg. Math. Soc. 2024, 32, 1–10. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.E.; Oros, G.I.; El-Ashwah, R.M.; Albalahi, A.M. Third-Order Fuzzy Subordination and Superordination on Analytic Functions on Punctured Unit Disk. Axioms 2025, 14, 378. https://doi.org/10.3390/axioms14050378
Ali EE, Oros GI, El-Ashwah RM, Albalahi AM. Third-Order Fuzzy Subordination and Superordination on Analytic Functions on Punctured Unit Disk. Axioms. 2025; 14(5):378. https://doi.org/10.3390/axioms14050378
Chicago/Turabian StyleAli, Ekram E., Georgia Irina Oros, Rabha M. El-Ashwah, and Abeer M. Albalahi. 2025. "Third-Order Fuzzy Subordination and Superordination on Analytic Functions on Punctured Unit Disk" Axioms 14, no. 5: 378. https://doi.org/10.3390/axioms14050378
APA StyleAli, E. E., Oros, G. I., El-Ashwah, R. M., & Albalahi, A. M. (2025). Third-Order Fuzzy Subordination and Superordination on Analytic Functions on Punctured Unit Disk. Axioms, 14(5), 378. https://doi.org/10.3390/axioms14050378