High Relative Accuracy for Corner Cutting Algorithms
Abstract
:1. Introduction
2. Totally Positivity and Bidiagonal Decompositions
- for all i,
- for ,
- and , for .
- 1.
- for all i;
- 2.
- , for and .
3. High Relative Accuracy
4. Stochastic Matrices TP and Corner Cutting Algorithms
5. Construction of Corner Cutting Algorithms with HRA
Algorithm 1 Computation of a corner cutting algorithm from a bidiagonal factorization |
|
6. Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TP | Totally positive |
CNE | Complete Neville elimination |
HRA | High relative accuracy |
SF | Subtraction free |
CAGD | Computer-aided geometric design |
References
- Demmel, J. Accurate singular value decompositions of structured matrices. SIAM J. Matrix Anal. Appl. 1999, 21, 562–580. [Google Scholar] [CrossRef]
- Demmel, J.; Koev, P. The accurate and efficient solution of a totally positive generalized Vandermonde linear system. SIAM J. Matrix Anal. Appl. 2005, 27, 42–52. [Google Scholar]
- Higham, N.J. Accuracy and Stability of Numerical Algorithms, 2nd ed.; SIAM: Philadelphia, PA, USA, 2002. [Google Scholar]
- Koev, P. Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 2005, 27, 1–23. [Google Scholar]
- Koev, P. Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 2007, 29, 731–751. [Google Scholar]
- Koev, P. TNTool. Available online: https://sites.google.com/sjsu.edu/plamenkoev/home/software/tntool (accessed on 6 February 2025).
- Marco, A.; Martínez, J.J. Accurate computation of the Moore–Penrose inverse of strictly totally positive matrices. J. Comput. Appl. Math. 2019, 350, 299–308. [Google Scholar] [CrossRef]
- Demmel, J.; Dumitriu, I.; Holtz, O.; Koev, P. Accurate and efficient expression evaluation and linear algebra. Acta Numer. 2008, 17, 87–145. [Google Scholar]
- Farin, G. Curves and Surfaces for Computer-Aided Geometric Design. A Practical Guide, 4th ed.; Academic Press: San Diego, CA, USA; Computer Science and Scientific Computing, Inc.: Rockaway, NJ, USA, 1997. [Google Scholar]
- Goodman, T.N.T.; Micchelli, C.A. Corner cutting algorithms for the Bézier representation of free form curves. Linear Algebra Appl. 1988, 99, 225–252. [Google Scholar]
- Hoschek, J.; Lasser, D. Fundamentals of Computer Aided Geometric Design; A K Peters: Wellesley, MA, USA, 1993. [Google Scholar]
- Micchelli, C.A.; Pinkus, A.M. Descartes systems from corner cutting. Constr. Approx. 1991, 7, 161–194. [Google Scholar] [CrossRef]
- Barreras, A.; Peña, J.M. Matrices with bidiagonal decomposition, accurate computations and corner cutting algorithms. In Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, Birkhauser; Operator Theory, Advances and Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 236, pp. 43–51. [Google Scholar]
- Fallat, S.M.; Johnson, C.R. Totally Nonnegative Matrices; Princeton Series in Applied Mathematics; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Gantmacher, F.P.; Krein, M.G. Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, Revised Edition; AMS Chelsea Publishing: Providence, RI, USA, 2002. [Google Scholar]
- Ando, T. Totally positive matrices. Linear Algebra Appl. 1987, 90, 165–219. [Google Scholar]
- Gasca, M.; Micchelli, C.A. Total Positivity and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Karlin, S. Total Positivity; Stanford University Press: Stanford, CA, USA, 1968; Volume 1. [Google Scholar]
- Pinkus, A. Totally Positive Matrices; Cambridge Tracts in Mathematics 181; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Barreras, A.; Peña, J.M. Accurate computations of matrices with bidiagonal decomposition using methods for totally positive matrices. Numer. Linear Algebra Appl. 2013, 20, 413–424. [Google Scholar] [CrossRef]
- Gasca, M.; Peña, J.M. On factorizations of totally positive matrices. In Total Positivity and Its Applications; Gasca, M., Micchelli, C.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 109–130. [Google Scholar]
- Gasca, M.; Peña, J.M. Total positivity and Neville elimination. Linear Algebra Appl. 1992, 165, 25–44. [Google Scholar]
- Demmel, J.; Gu, M.; Eisenstat, S.; Slapnicar, I.; Veselic, K.; Drmac, Z. Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 1999, 299, 21–80. [Google Scholar]
- Marco, A.; Martínez, J.J. A fast and accurate algorithm for solving Bernstein-Vandermonde linear systems. Linear Algebra Appl. 2007, 422, 616–628. [Google Scholar]
- Marco, A.; Martínez, J.J. Polynomial least squares fitting in the Bernstein basis. Linear Algebra Appl. 2010, 433, 1254–1264. [Google Scholar]
- Marco, A.; Martínez, J.J. Accurate computations with totally positive Bernstein-Vandermonde matrices. Electron. J. Linear Algebra 2013, 26, 357–380. [Google Scholar] [CrossRef]
- Marco, A.; Martínez, J.J. Accurate computations with Said-Ball-Vandermonde matrices. Linear Algebra Appl. 2010, 432, 2894–2908. [Google Scholar]
- Delgado, J.; Peña, J.M. Accurate computations with collocation matrices of rational bases. Appl. Math. Comput. 2013, 219, 4354–4364. [Google Scholar] [CrossRef]
- Delgado, J.; Peña, J.M. Accurate computations with collocation matrices of q-Bernstein polynomials. SIAM J. Matrix Anal. Appl. 2015, 36, 880–893. [Google Scholar] [CrossRef]
- Marco, A.; Martínez, J.J.; Viaña, R. Accurate bidiagonal decomposition of totally positive h-Bernstein-Vandermonde matrices and applications. Linear Algebra Appl. 2019, 579, 320–335. [Google Scholar]
- Joy, K.I. On-Line Geometric Modeling Notes: Chaikin’s Algorithm for Curves. Visualization and Graphics Research Group, Department of Computer Science, University of California, Davis. 1999. Available online: https://www.cs.unc.edu/~dm/UNC/COMP258/LECTURES/Chaikins-Algorithm.pdf (accessed on 10 March 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballarín, J.; Delgado, J.; Peña, J.M. High Relative Accuracy for Corner Cutting Algorithms. Axioms 2025, 14, 248. https://doi.org/10.3390/axioms14040248
Ballarín J, Delgado J, Peña JM. High Relative Accuracy for Corner Cutting Algorithms. Axioms. 2025; 14(4):248. https://doi.org/10.3390/axioms14040248
Chicago/Turabian StyleBallarín, Jorge, Jorge Delgado, and Juan Manuel Peña. 2025. "High Relative Accuracy for Corner Cutting Algorithms" Axioms 14, no. 4: 248. https://doi.org/10.3390/axioms14040248
APA StyleBallarín, J., Delgado, J., & Peña, J. M. (2025). High Relative Accuracy for Corner Cutting Algorithms. Axioms, 14(4), 248. https://doi.org/10.3390/axioms14040248