The Reverse Order Law for the {1,3M,4N}—The Inverse of Two Matrix Products
Abstract
:1. Introduction
- : the set of complex matrices;
- , : the range space and the null space of A, respectively;
- , : the rank and the conjugate transpose of A, respectively;
- : the weighted conjugate transpose matrices of A with positive-definite Hermitian matrices M and N.
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernandez, A.; Lattanz, M.; Thome, N. On a partial order defined by the weighted Moore–Penrose inverse. Appl. Math. Comput. 2013, 219, 7310–7318. [Google Scholar] [CrossRef]
- Wang, G.R.; Wei, Y.M.; Qiao, S.Z. Generalized Inverse: Theory and Computations; Science Press: Beijing, China, 2004. [Google Scholar]
- Wei, M. Theory and Calculation of Generalized Least Squares Problem; Science Press: Beijing, China, 2006. [Google Scholar]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverse: Theory and Applications. In Wiley-Interscience, 1974, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Campbell, S.L.; Meyer, C.D. Generalized Inverse of Linear Transformations; Dover: NewYork, NY, USA, 1979. [Google Scholar]
- Cvetković-IIić, D.S.; Milosevic, J. Reverse order laws for {1, 3}-generalized inverses. Linear Multilinear Algebra 2018, 234, 114–117. [Google Scholar]
- Pierro, A.R.D.; Wei, M. Reverse order law for reflexive generalized inverses of products of matrices. Linear Algebra Appl. 1998, 277, 299–311. [Google Scholar] [CrossRef]
- Djordjević, D.S. Further results on the reverse order law for generalized inverses. SIAM J. Matrix Anal. Appl. 2007, 29, 1242–1246. [Google Scholar]
- Greville, T.N.E. Note on the generalized inverses of a matrix products. SIAM Rev. 1966, 8, 518–521. [Google Scholar] [CrossRef]
- Hartwig, R.E. The reverse order law revisited. Linear Algebra Appl. 1986, 76, 241–246. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y. A mixed-type reverse order law for generalized inverse of a triple matrix product. Acta Math. Sin. Chin. Ser. 2009, 52, 197–204. [Google Scholar]
- Liu, Q.; Wei, M. Reverse order law for least squares g-inverses of multiple matrix products. Linear Mult. Algebra 2008, 56, 491–506. [Google Scholar] [CrossRef]
- Penrose, R. A generalized inverse for matrix. Proc. Camb. Philos. Soc. 1955, 51, 406–413. [Google Scholar] [CrossRef]
- Sampazo, R.J.B.; Sun, W.; Yuan, J. On trust region algorithm for nonsmooth optimization. Appl. Math. Comput. 1997, 85, 109–116. [Google Scholar]
- Rao, C.R.; Mitra, S.K. Generalized Inverse of Matrices and Its Applications; Wiley: NewYork, NY, USA, 1971. [Google Scholar]
- Tian, Y. Reverse order laws for the generalized inverse of multiple matrix products. Linear Algebra Appl. 1994, 211, 85–100. [Google Scholar] [CrossRef]
- Tian, Y. More on maximal and minimal ranks of Schur complements with applications. Appl. Math. Comput. 2004, 152, 675–692. [Google Scholar] [CrossRef]
- Wei, M. Reverse order laws for generalized inverse of multiple matrix products. Linear Algebra Appl. 1999, 293, 273–288. [Google Scholar] [CrossRef]
- Sitha, B.; Behera, R.; Sahoo, J.K.; Mohapatra, R.N.; Stanimirović, P.; Stupina, A. Characterizations of weighted generalized inverses. Aequat. Math. 2025, 1–36. [Google Scholar] [CrossRef]
- Kyrchei, I. Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore-Penrose inverse. Appl. Math. Comput. 2017, 309, 1–16. [Google Scholar] [CrossRef]
- Nikolov, J.; Cvetković-Ilić, D.S. Reverse order laws for the weighted generalized inverses. Appl. Math. Lett. 2011, 24, 2140–2145. [Google Scholar] [CrossRef]
- Sun, W.; Wei, Y. Inverse order rule for weighted generalized inverse. SIAM J. Matrix Anal. Appl. 1998, 19, 772–775. [Google Scholar] [CrossRef]
- Sun, W.; Wei, Y. Triple reverse-order rule for weighted generalized inverses. Appl. Math. Comput. 2002, 125, 221–229. [Google Scholar]
- Tian, Y. A family of 512 reverse order laws for generalized inverse of a matrix product: A review. Heliyon 2020, 6, e04924. [Google Scholar] [CrossRef]
- Tian, Y. Characterizations of matrix equalities involving the sums and products of multiple matrices and their generalized inverse. Electron. Res. Arch. 2023, 31, 5866–5893. [Google Scholar] [CrossRef]
- Xiong, Z.P.; Liu, Z.S. Applications of completions of operator matrices to some properties of operator products on Hilbert spaces. Complex Anal. Oper. Theory 2018, 12, 123–140. [Google Scholar] [CrossRef]
- Xiong, Z.P.; Zheng, B. The reverse order laws for {1, 2, 3}- and {1, 2, 4}-inverses of two matrix product. Appl. Math. Lett. 2008, 21, 649–655. [Google Scholar] [CrossRef]
- Zheng, B.; Xiong, Z.P. On reverse order laws for the weighted generalized inverse. Arab. J. Sci. Eng. 2008, 34, 195–203. [Google Scholar]
- Cohen, N.; Johnson, C.R.; Rodman, L.; Woerdeman, H.J. Ranks of completions of partial matrices. Oper. Theory Adv. Appl. 1989, 40, 165–185. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Qiu, B.; Xiong, Z. The Reverse Order Law for the {1,3M,4N}—The Inverse of Two Matrix Products. Axioms 2025, 14, 344. https://doi.org/10.3390/axioms14050344
Qin Y, Qiu B, Xiong Z. The Reverse Order Law for the {1,3M,4N}—The Inverse of Two Matrix Products. Axioms. 2025; 14(5):344. https://doi.org/10.3390/axioms14050344
Chicago/Turabian StyleQin, Yingying, Baifeng Qiu, and Zhiping Xiong. 2025. "The Reverse Order Law for the {1,3M,4N}—The Inverse of Two Matrix Products" Axioms 14, no. 5: 344. https://doi.org/10.3390/axioms14050344
APA StyleQin, Y., Qiu, B., & Xiong, Z. (2025). The Reverse Order Law for the {1,3M,4N}—The Inverse of Two Matrix Products. Axioms, 14(5), 344. https://doi.org/10.3390/axioms14050344