Strongly F-Convex Functions with Structural Characterizations and Applications in Entropies
Abstract
1. Introduction
- Equivalently,
- For Tsallis entropy reduces to the Shannon entropy [31], defined by
- The Rényi entropy [32] is defined by
- (a)
- f is strongly F-convex if and only if is convex.
- (b)
- f is strongly F-concave if and only if is concave.
2. Characterizations of Strong -Convexity
- 1.
- For with the function belongs to when
- 2.
- For with the function belongs to when
- 1.
- If , then with
- 2.
- If , then with
- 1.
- If , then with
- 2.
- If , then with
- (a)
- If the convexity region is whole
- (b)
- If then is strictly increasing on Taking the -root, we get Therefore, the convexity region is .
- (c)
- If then is strictly decreasing on Taking the -root, we get Therefore, the convexity region is
- (d)
- If then ; hence, , i.e., Then holds for every
- 1.
- 2.
- 1.
- 2.
- 3.
3. Jensen-Type Inequalities Based on Strong -Convexity
- 1.
- For and
- 2.
- For
- 1.
- For and
- 2.
- For
4. Hermite–Hadamard-Type Inequalities for Strongly -Convex Functions
- 1.
- 2.
- 1.
- 2.
- For inequality (14) givesIntegrating over yields (1).
- Similarly,and integrating over gives (2).
5. Analytical and Entropic Applications of Strong -Convexity
- 1.
- 2.
- 3.
- If and , then
- If and , then
- (a)
- for
- (b)
- for
- (c)
- for
- (d)
- for
- (a)
- Let , andApplying Proposition 10, the upper bound for Rényi entropy isFor comparison, the classical Jensen-based upper bound isand the exact Rényi entropy is
- (b)
- Let andApplying Proposition 10, the upper bound isThe classical Jensen-based upper bound isand the exact Rényi entropy is
| Distribution | Exact R1.5 | Paper Bound | Classical Jensen Bound |
| P1 | 2.156 | 2.197 | 2.303 |
| P2 | 3.840 | 3.881 | 3.912 |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bot, R.I.; Kassay, G.; Wanka, G. Strong duality for generalized convex optimization problems. J. Optim. Theory Appl. 2005, 127, 45–70. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications. A Contemporary Approach, 2nd ed.; CMS Books in Mathematics; Springer: New York, NU, USA, 2018. [Google Scholar]
- Pećarixcx, J.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inegalites inégalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Hermite, C. Sur deux limites d’une intégrale définie. Bull. Sci. Math. Astronom. 1883, 7, 72–79. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entičres et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 9, 171–215. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Mitrinović, D.S.; Pexcxarixcx, J.E.; Fink, A.M. Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and Its Applications (East European Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1991; Volume 53. [Google Scholar]
- Tyrrell Rockafellar, R. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Kelly, J.P.; Weiss, M.L. Geometry and Convexity: A Study in Mathematical Methods; Wiley: Hoboken, NJ, USA, 1979. [Google Scholar]
- Carlen, E.; Madiman, M.; Werner, E.M. Convexity and Concentration; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Cortez, M.V.; Althobaiti, A.; Aljohani, A.F.; Althobaiti, S. Generalized fuzzy valued convexity with Ostrowski’s and Hermite-Hadamard type inequalities over inclusion relations and their applications. Axioms 2024, 13, 471. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Shreve, S.E. Stochastic Calculus for Finance I: The Binomial Asset Pricing Model; Springer: New York, NY, USA, 2004. [Google Scholar]
- Juditsky, A.; Nemirovski, A. Statistical Inference via Convex Optimization; Princeton University Press: Princeton, NJ, USA, 2020. [Google Scholar]
- Polyanskiy, Y.; Wu, Y. Lecture, Information Theory: From Coding to Learning; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Sra, S.; Nowozin, S.; Wright, S.J. Optimization for Machine Learning; The MIT Press Cambridge: London, UK, 2012. [Google Scholar]
- Azhmyakov, V.; Vadim; Raisch, J. Convex control systems and convex optimal control problems with constraints. IEEE Trans. Autom. Control 2008, 53, 993–998. [Google Scholar] [CrossRef]
- Ben-Haim, Y.; Elishakoff, I. Convex Models of Uncertainty in Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Galgani, L.; Scotti, A. Further remarks on convexity of thermodynamic functions. Physica 1969, 42, 242–244. [Google Scholar] [CrossRef]
- Mitrinović, D.S. Analytic Inequalities; Springer: New York, NY, USA, 1970. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Melbourne, VIC, Australia, 2000. [Google Scholar]
- Dragomir, S.S. Bounds for the normalised Jensen functional. Bull. Austral. Math. Soc. 2006, 74, 471–478. [Google Scholar] [CrossRef]
- Krnić, M.; Lovrixcxevixcx, N.; Perixcx, J.P.J. Superadditivity and Monotonicity of the Jensen-Type Functionals (New Methods for Improving the Jensen-Type Inequalities in Real and in Operator Cases); Element: Zagreb, Croatia, 2015. [Google Scholar]
- Morales, J.V.; Rincón, L. Probability distributions and the maximum entropy principle. Appl. Math. Comput. 2023, 444, 127806. [Google Scholar] [CrossRef]
- Jüngel, A. Entropy Methods for Diffusive Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Sethna, J.P. Statistical Mechanics: Entropy, Order Parameters and Complexity, 2nd ed.; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Rényi, A. On measures of information and entropy. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1960; University of California Press: Oakland, CA, USA, 1961. [Google Scholar]
- Csiszár, I.; Körner, J. Information Theory: Coding Theorem for Discrete Memoryless Mystems; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Dragomir, S.S. Other Inequalities for Csiszár Divergence and Applications; RGMIA Monographs; Victoria University: Melbourne, VIC, Australia, 2000. [Google Scholar]
- Ivelić Bradanović, S. Sherman’s inequality and its converse for strongly convex functions with applications to generalized f-divergence. Turk. J. Math. 2019, 43, 2680–2696. [Google Scholar] [CrossRef]
- Melbourne, J. Strongly Convex Divergences. Entropy 2020, 22, 1327. [Google Scholar] [CrossRef]
- Sahatsathatsana, C.; Yotkaew, P. New Estimates of the q-Hermite–Hadamard Inequalities via Strong Convexity. Axioms 2025, 14, 576. [Google Scholar] [CrossRef]
- Kalsoom, H.; Cortez, M.V.; Latif, M.A. Trapezoidal type inequalities for strongly convex and quasi-convex functions via post-quantum calculus. Entropy 2021, 23, 1238. [Google Scholar] [CrossRef]
- Fitzsimmons, M.; Liu, J. A note on the equivalence of a strongly convex function and its induced contractive differential equation. Automatica 2022, 142, 110349. [Google Scholar] [CrossRef]
- Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 96. [Google Scholar] [CrossRef]
- Chen, S.B.; Rashid, S.; Noor, M.A.; Hammouch, Z.; Chu, Y.M. New fractional approaches for n-polynomial P-convexity with applications in special function theory. Adv. Differ. Equ. 2020, 2020, 543. [Google Scholar] [CrossRef]
- Ivelić Bradanović, S. Improvements of Jensen’s inequality and its converse for strongly convex functions with applications to strongly f-divergences. J. Math. Anal. Appl. 2024, 531, 1–16. [Google Scholar] [CrossRef]
- Dragomir, S.S. On the reverse of Jessen’s inequality for isotonic linear functionals. J. Inequal. Pure Appl. Math. 2001, 2, 1–13. [Google Scholar]
- Perić, J. Strong F-convexity and concavity and refinements of some classical inequalities. J. Inequal. Appl. 2024, 2024, 96. [Google Scholar] [CrossRef]
- Perić, J. The Clausing inequality and strong F-concavity. J. Math. Inequal. 2024, 18, 1201–1216. [Google Scholar] [CrossRef]
- Hartman, P. On functions representable as a difference of convex functions. Pac. J. Math. 1959, 9, 707–713. [Google Scholar] [CrossRef]
- Veselý, L.; Zajíček, L. Delta Convex Mappings Between Banach Spaces and Applications; Dissert. Math. 289; PWN: Warszawa, Poland, 1989. [Google Scholar]
- Dragomir, S.S.; Ionescu, N.M. On some inequaliti es for convex-dominated functions. L’Anal. Num. Théor. L’Approx. 1990, 19, 21–27. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barsam, H.; Ivelić Bradanović, S.; Jelić, M.; Sayyari, Y. Strongly F-Convex Functions with Structural Characterizations and Applications in Entropies. Axioms 2025, 14, 926. https://doi.org/10.3390/axioms14120926
Barsam H, Ivelić Bradanović S, Jelić M, Sayyari Y. Strongly F-Convex Functions with Structural Characterizations and Applications in Entropies. Axioms. 2025; 14(12):926. https://doi.org/10.3390/axioms14120926
Chicago/Turabian StyleBarsam, Hasan, Slavica Ivelić Bradanović, Matea Jelić, and Yamin Sayyari. 2025. "Strongly F-Convex Functions with Structural Characterizations and Applications in Entropies" Axioms 14, no. 12: 926. https://doi.org/10.3390/axioms14120926
APA StyleBarsam, H., Ivelić Bradanović, S., Jelić, M., & Sayyari, Y. (2025). Strongly F-Convex Functions with Structural Characterizations and Applications in Entropies. Axioms, 14(12), 926. https://doi.org/10.3390/axioms14120926

