Deriving Binomial Convolution Formulas for Horadam Sequences via Context-Free Grammars
Abstract
1. Introduction
2. Preliminaries
- denotes Horadam sequence .
- denotes Horadam sequence ,
- denotes Horadam sequence ,
- denotes -Fibonacci sequence ,
- denotes -Lucas sequence ,
- denotes .
- (1)
- Each letter in A is a formal function.
- (2)
- If x and y are formal functions, then and are all formal functions.
- (3)
- If x is a formal function and is an analytic function in t, then is a formal function.
- (4)
- Every formal function is constructed as above in a finite number of steps.
- (1)
- For two formal functions x and y, we have
- (2)
- For any analytic function and formal function x, we have
- (3)
- For a letter u in A, if there is a rule in the grammar G, where v is a formal function, then ; otherwise , and u is called a constant or a terminal.
3. Convolution Formulas of Horadam Sequences
3.1. Convolution Formulas Related to and
- (i)
- ;
- (ii)
- ;
- (iii)
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- .
- (i)
- ;
- (ii)
- .
3.2. Convolution Formulas Related to and
- (i)
- ;
- (ii)
- ;
- (iii)
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- .
- (i)
- ;
- (ii)
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- .
3.3. Convolution Formulas Related to
- (i)
- ;
- (ii)
- ;
- (iii)
- .
- (i)
- ;
- (ii)
- .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horadam, A.F. A generalized Fibonacci sequence. Am. Math. Mon. 1961, 68, 455–459. [Google Scholar] [CrossRef]
- Cao, S.; Wang, T. Symmetric inequalities for reciprocal sums of Fibonacci numbers. Symmetry 2025, 17, 1743. [Google Scholar] [CrossRef]
- Church, C.A.; Bicknell, M. Exponential generating functions for Fibonacci identities. Fibonacci Q. 1973, 11, 275–281. [Google Scholar] [CrossRef]
- Carlitz, L. Some classes of Fibonacci sums. Fibonacci Q. 1978, 16, 411–426. [Google Scholar] [CrossRef]
- Đorđević, G.B.; Milovanović, G.V. Special Classes of Polynomials; Faculty of Technology, Leskovac, University of Niš: Leskovac, Serbia, 2014. [Google Scholar]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed.; Addison-Wesley: Reading, MA, USA, 1994. [Google Scholar]
- Gulec, H.H.; Taskara, N. On the properties of Fibonacci numbers with binomial coefficients. Int. J. Contemp. Math. Sci. 2009, 4, 1251–1256. [Google Scholar]
- Guo, D.; Chu, W. Binomial sums with Pell and Lucas polynomials. Bull. Belg. Math. Soc.—Simon Stevin 2021, 28, 133–145. [Google Scholar] [CrossRef]
- Roettger, E.L.F.; Williams, H.C. The Enchantment of Numbers; Springer: Cham, Switzerland, 2025; pp. 69–117. [Google Scholar]
- Taskara, N.; Uslu, K.; Gulec, H.H. On the properties of Lucas numbers with binomial coefficients. Appl. Math. Lett. 2010, 23, 68–72. [Google Scholar] [CrossRef]
- Vajda, S. Fibonacci and Lucas Numbers, and the Golden Section, Theory and Applications; John Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- Guo, B.N.; Polatlı, E.; Qi, F. Determinantal formulas and recurrent relations for bi-periodic Fibonacci and Lucas polynomials. In New Trends in Applied Analysis and Computational Mathematics, Proceedings of the International Conference on Advances in Mathematics and Computing (ICAMC 2020), Odisha, India, 7–8 February 2020; Springer: Singapore, 2021; pp. 263–276. [Google Scholar]
- Huan, Z.; Liu, L.L.; Yan, X. A unified approach to multivariate polynomial sequences with real stability. Adv. Appl. Math. 2023, 148, 102534. [Google Scholar] [CrossRef]
- Koparal, S.; Ömür, N.; Boz, S.; Mohamed, K.S.; Khan, W.A.; Adam, A. Generalized Fibonacci polynomials and their properties. Symmetry 2025, 17, 1898. [Google Scholar] [CrossRef]
- Liu, L.L.; Wang, Y. A unified approach to polynomial sequences with only real zeros. Adv. Appl. Math. 2007, 38, 542–560. [Google Scholar] [CrossRef]
- Ma, S.-M.; Qi, H.; Yeh, J.; Yeh, Y.-N. Stirling permutation codes. II. J. Comb. Theory Ser. A 2026, 217, 106093. [Google Scholar] [CrossRef]
- Qi, F.; Kızılateş, C.; Du, W.-S. A closed formula for the Horadam polynomials in terms of a tridiagonal determinant. Symmetry 2019, 11, 782. [Google Scholar] [CrossRef]
- Soykan, Y. On generalized Fibonacci polynomials: Horadam polynomials. Earthline J. Math. Sci. 2023, 11, 23–114. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Li, H.-L.; Zhang, Z.-H. A grammatical interpretation of Horadam sequences. Axioms 2025, 14, 819. [Google Scholar] [CrossRef]
- Chen, W.Y.C. Context-free grammars, differential operators and formal power series. Theor. Comput. Sci. 1993, 117, 113–129. [Google Scholar] [CrossRef]
- Ma, S.-M.; Bian, H.; Liu, J.-Y.; Yeh, J.; Yeh, Y.-N. Determinantal representations of enumerative polynomials. Discret. Appl. Math. 2026, 378, 682–702. [Google Scholar] [CrossRef]
- Ma, S.-M.; Liu, J.-Y.; Yeh, J.; Yeh, Y.-N. Eulerian-type polynomials over Stirling permutations and box sorting algorithm. J. Comb. Theory Ser. A 2026, 220, 106132. [Google Scholar] [CrossRef]
- Ma, S.-M.; Qi, H.; Yeh, J.; Yeh, Y.-N. On the joint distributions of succession and Eulerian statistics. Adv. Appl. Math. 2025, 162, 102772. [Google Scholar] [CrossRef]
- Chen, W.Y.C.; Fu, A.M. The Dumont ansatz for the Eulerian polynomials, peak polynomials and derivative polynomials. Ann. Comb. 2023, 27, 707–735. [Google Scholar] [CrossRef]
- Chen, W.Y.C. Context-free grammars, permutations and increasing trees. Adv. Appl. Math. 2017, 82, 58–82. [Google Scholar] [CrossRef]
- Ma, S.-M.; Ma, J.; Yeh, J.; Yeh, Y.-N. Excedance-type polynomials, gamma-positivity and alternatingly increasing property. Eur. J. Comb. 2024, 118, 103869. [Google Scholar] [CrossRef]
- Ma, S.-M. Some combinatorial arrays generated by context-free grammars. Eur. J. Comb. 2013, 34, 1081–1091. [Google Scholar] [CrossRef]
- Ma, S.-M.; Ma, J.; Yeh, Y.-N.; Zhu, B.-X. Context-free grammars for several polynomials associated with Eulerian polynomials. Electron. J. Comb. 2018, 25, P1.31. [Google Scholar] [CrossRef] [PubMed]
- Shabiya, Y.; Kruchinin, V.; Kruchinin, D. Enumeration of words derived from unambiguous context-free grammars based on powers of generating functions. Proc. Jangjeon Math. Soc. 2025, 28, 299–317. [Google Scholar]
- Yang, H.R.; Phang, C. A context-free grammar associated with Fibonacci and Lucas sequences. J. Math. 2023, 2023, 6497710. [Google Scholar] [CrossRef]
- Zhou, R.R.; Yeh, J.; Ren, F. Context-free grammars for several triangular arrays. Axioms 2022, 11, 297. [Google Scholar] [CrossRef]
- Goldman, J.R. Formal languages and enumeration. J. Comb. Theory Ser. A 1978, 24, 318–338. [Google Scholar] [CrossRef][Green Version]
| Name | Parameter Representation |
|---|---|
| Fibonacci number | |
| Lucas number | |
| Pell number | |
| Pell–Lucas number | |
| Jacobsthal number | |
| Jacobsthal–Lucas number | |
| Fermat number | |
| Fermat–Lucas number | |
| balancing number | |
| modified Lucas-balancing number | |
| Fibonacci polynomial | |
| Lucas polynomial | |
| Pell polynomial | |
| Pell–Lucas polynomial | |
| Jacobsthal polynomial | |
| Jacobsthal–Lucas polynomial | |
| Fermat polynomial | |
| Fermat–Lucas polynomial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.-Y.; Li, H.-L.; Zhang, Z.-H.; Liu, T. Deriving Binomial Convolution Formulas for Horadam Sequences via Context-Free Grammars. Axioms 2025, 14, 910. https://doi.org/10.3390/axioms14120910
Liu J-Y, Li H-L, Zhang Z-H, Liu T. Deriving Binomial Convolution Formulas for Horadam Sequences via Context-Free Grammars. Axioms. 2025; 14(12):910. https://doi.org/10.3390/axioms14120910
Chicago/Turabian StyleLiu, Jun-Ying, Hai-Ling Li, Zhi-Hong Zhang, and Tao Liu. 2025. "Deriving Binomial Convolution Formulas for Horadam Sequences via Context-Free Grammars" Axioms 14, no. 12: 910. https://doi.org/10.3390/axioms14120910
APA StyleLiu, J.-Y., Li, H.-L., Zhang, Z.-H., & Liu, T. (2025). Deriving Binomial Convolution Formulas for Horadam Sequences via Context-Free Grammars. Axioms, 14(12), 910. https://doi.org/10.3390/axioms14120910

