Synchronization of Markovian Switching Stochastic Delayed Complex Dynamical Networks via Pinning Control
Abstract
1. Introduction
- We establish a network model that considers time delays, random disturbance, and Markovian switching at the same time, so that the research results can better reflect the complexity in practical engineering.
- For the above MSSDCDNs, the corresponding control strategy is designed to apply control signals only at some nodes, and the sufficient conditions for the mean square exponential synchronization of the system are derived by using the Lyapunov–Krasovskii function, an inequality technique, and other mathematical tools.
- Some simulation experiments show the effectiveness and feasibility of the obtained theoretical results in the case of time delays, random disturbance, and Markovian switching mode.
Notation
2. Preliminaries and Model Formulations
3. Main Results
3.1. On Synchronization Criteria of SDCDNs via Pinning Control
3.2. Global Synchronization Criteria with Adaptive Control Approach
4. Simulation Examples
4.1. Synchronization of SDCDNs via Feedback Pinning Control
4.2. Synchronization of SDCDNs via Adaptive Pinning Control
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Forsberg, S.; Thomas, K.; Bergkvist, M. Power grid vulnerability analysis using complex network theory: A topological study of the Nordic transmission grid. Phys. A Stat. Mech. Appl. 2023, 626, 129072. [Google Scholar] [CrossRef]
- Guo, J.; Cheng, Z.; Wang, B.Z. Internet development and entrepreneurship. China Econ. Rev. 2024, 88, 102280. [Google Scholar] [CrossRef]
- Zhou, R.; Xu, Z.; Wang, Y. Dynamics of cascading failures in biological networks. Comput. Struct. Biotechnol. Rep. 2024, 1, 100024. [Google Scholar] [CrossRef]
- Sperlì, G. Community detection in Multimedia Social Networks using an attributed graph model. Online Soc. Netw. Media 2025, 46, 100312. [Google Scholar] [CrossRef]
- Yang, J.; Duan, X.; Li, X. Dynamical analysis of an immumo-epidemiological coupled system on complex networks. Commun. Nonlinear Sci. Numer. Simul. 2023, 119, 107116. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Kader, A.A.; El-Kalla, I.; Elsaid, A.; Elsonbaty, A.; Nisar, K. Dynamical analysis of a complex competitive two-strain epidemic network model with vaccination. Partial Differ. Equ. Appl. Math. 2025, 13, 101058. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Y.; Jiang, G.-P. Exploring synchronizability of complex dynamical networks from edges perspective. Phys. A Stat. Mech. Appl. 2024, 638, 129660. [Google Scholar] [CrossRef]
- Chen, K.; Huang, N.; Wang, Y.; Zhu, J.; Yu, J. Reliability analysis for 5G industrial network with application and dynamic coupling. Measurement 2024, 238, 115384. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Liu, Z. Dynamic analysis and community recognition of stock price based on a complex network perspective. Expert Syst. Appl. 2023, 213, 118944. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, D.; Cui, X.; Zhou, K.; Wang, B. Distributed adaptive finite-time and fixed-time cluster synchronization of complex networks. J. Frankl. Inst. 2025, 46, 107533. [Google Scholar] [CrossRef]
- Zhao, T.; Hu, C.; Huang, J.; Yu, J. Fixed/Prescribed-time synchronization of multi-layer complex networks under switching control. Chaos Solitons Fractals 2024, 185, 115183. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, Q. Synchronization in directed nonlinear complex networks under intermittent stochastic control. Commun. Nonlinear Sci. Numer. Simul. 2024, 132, 107894. [Google Scholar] [CrossRef]
- Yang, W.; Huang, J.; He, X.; Wen, S. Fixed-time synchronization of complex-valued neural networks for image protection and 3D point cloud information protection. Neural Netw. 2024, 172, 106089. [Google Scholar] [CrossRef] [PubMed]
- Nag Chowdhury, S.; Rakshit, S.; Hens, C.; Ghosh, D. Interlayer antisynchronization in degree-biased duplex networks. Phys. Rev. E 2023, 107, 034313. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Li, J.; Jiang, H.; Wang, J. Quasi-synchronization of neural networks via non-fragile impulsive control: Multi-layer and memristor-based. Neurocomputing 2024, 596, 128024. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, J.; Jiang, B.; Zhong, J. Impulsive synchronization control for dynamic networks subject to double deception attacks. Expert Syst. Appl. 2024, 251, 124000. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Gao, P.; Peng, Y.; Li, S. Asymptotical tracking control for the complex network based on the dynamic topology. ISA Trans. 2024, 148, 105–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Yu, J.; Liu, D. Single neural network-based asymptotic adaptive control for an autonomous underwater vehicle with uncertain dynamics. Ocean Eng. 2023, 286, 115553. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Y.; Li, M.; Zhang, Y. Exponential synchronization of complex networks via intermittent dynamic event-triggered control. Neurocomputing 2024, 581, 127478. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, Z.; Xue, L.; Ahn, C.K.; Liu, J. Stabilization of complex networks under asynchronously intermittent event-triggered control. Automatica 2024, 161, 111493. [Google Scholar] [CrossRef]
- Wang, X.F.; Chen, G. Pinning control of scale-free dynamical networks. Phys. A Stat. Mech. Appl. 2002, 310, 521–531. [Google Scholar] [CrossRef]
- Yu, W.; Chen, G.; Lü, J. On pinning synchronization of complex dynamical networks. Automatica 2009, 45, 429–435. [Google Scholar] [CrossRef]
- Liu, H.; Xu, X.; Lu, J.-A.; Chen, G.; Zeng, Z. Optimizing pinning control of complex dynamical networks based on spectral properties of grounded Laplacian matrices. IEEE Trans. Syst. Man Cybern. Syst. 2018, 51, 786–796. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, L. Turing instability analysis of a rumor propagation model with time delay on non-network and complex networks. Inf. Sci. 2024, 667, 120402. [Google Scholar] [CrossRef]
- Lin, H.-C.; Zeng, H.-B.; Zhang, X.-M.; Wang, W. Stability analysis for delayed neural networks via a generalized reciprocally convex inequality. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 7491–7499. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, C.; Zhang, X.-M. Allowable delay set flexible fragmentation approach to passivity analysis of delayed neural networks. Neurocomputing 2025, 629, 129730. [Google Scholar] [CrossRef]
- Zeng, H.-B.; Zhu, Z.-J.; Xiao, S.-P.; Zhang, X.-M. A switched system model for exponential stability and dissipativity of delayed neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 19708–19717. [Google Scholar] [CrossRef]
- Tu, C.; Luo, J.; Fan, Y.; Pan, X. Dimensionality reduction in stochastic complex dynamical networks. Chaos Solitons Fractals 2023, 175, 114034. [Google Scholar] [CrossRef]
- Nag Chowdhury, S.; Meyer-Ortmanns, H. Topologically protected edge oscillations in nonlinear dynamical units. Phys. Rev. E 2025, 112, 044204. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, J. Input-to-state stability of stochastic complex networks based on aperiodically intermittent sampled control. Neurocomputing 2024, 570, 127100. [Google Scholar] [CrossRef]
- Peng, C.; Liu, X.; Kang, R.; Wang, S.; Gao, S. Stochastic input-to-state stability for stochastic complex dynamical control networks with impulsive perturbation. Chaos Solitons Fractals 2023, 166, 112897. [Google Scholar] [CrossRef]
- Liang, K.; Dai, M.; Shen, H.; Wang, J.; Wang, Z.; Chen, B. L2-L∞ synchronization for singularly perturbed complex networks with semi-Markov jump topology. Appl. Math. Comput. 2018, 321, 450–462. [Google Scholar] [CrossRef]
- Wu, J.; Qin, G.; Cheng, J.; Cao, J.; Yan, H.; Katib, I. Adaptive neural network control for Markov jumping systems against deception attacks. Neural Netw. 2023, 168, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.-X.; Yu, C.; Long, Y.; Su, Q.; Zhao, X.-Q. A distributed fault estimation method for a class of nonlinear Markov jump systems. J. Frankl. Inst. 2023, 360, 13359–13379. [Google Scholar] [CrossRef]
- Tang, T.; Qin, G.; Zhang, B.; Cheng, J.; Cao, J. Event-based asynchronous state estimation for Markov jump memristive neural networks. Appl. Math. Comput. 2024, 473, 128653. [Google Scholar] [CrossRef]
- Mikaberidze, G.; Chowdhury, S.N.; Hastings, A.; D’Souza, R.M. Consensus formation among mobile agents in networks of heterogeneous interaction venues. Chaos Solitons Fractals 2024, 178, 114298. [Google Scholar] [CrossRef]
- Chowdhury, S.N.; Majhi, S.; Ghosh, D.; Prasad, A. Convergence of chaotic attractors due to interaction based on closeness. Phys. Lett. A 2019, 383, 125997. [Google Scholar] [CrossRef]
- Lin, H.; Wang, J. Pinning synchronization of complex networks with time-varying outer coupling and nonlinear multiple time-varying delay coupling. Phys. A Stat. Mech. Appl. 2022, 588, 126564. [Google Scholar] [CrossRef]
- Mao, X.; Yuan, C. Stochastic Differential Equations with Markovian Switching; Imperial College Press: London, UK, 2006. [Google Scholar]
- Xuan, D.; Tang, Z.; Feng, J.; Park, J.H. Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols. Chaos Solitons Fractals 2021, 152, 111337. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, Y.; Gao, S. Synchronization of Markovian Switching Stochastic Delayed Complex Dynamical Networks via Pinning Control. Axioms 2025, 14, 909. https://doi.org/10.3390/axioms14120909
Ling Y, Gao S. Synchronization of Markovian Switching Stochastic Delayed Complex Dynamical Networks via Pinning Control. Axioms. 2025; 14(12):909. https://doi.org/10.3390/axioms14120909
Chicago/Turabian StyleLing, Yanbo, and Shang Gao. 2025. "Synchronization of Markovian Switching Stochastic Delayed Complex Dynamical Networks via Pinning Control" Axioms 14, no. 12: 909. https://doi.org/10.3390/axioms14120909
APA StyleLing, Y., & Gao, S. (2025). Synchronization of Markovian Switching Stochastic Delayed Complex Dynamical Networks via Pinning Control. Axioms, 14(12), 909. https://doi.org/10.3390/axioms14120909

