Existence and Uniqueness of Solutions for Singular Fractional Integro-Differential Equations with p-Laplacian and Two Kinds of Fractional Derivatives
Abstract
1. Introduction
2. Preliminaries and Lemmas
3. Existence of Solutions
4. Uniqueness of Solutions
4.1. Uniqueness of Solutions for
4.2. Uniqueness of Solutions for
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Valvano, S.; Alaimo, A.; Orlando, C. Analytical analysis of sound transmission in passive damped multilayered shells. Compos. Struct. 2020, 253, 112742. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Henderson, J.; Luca, R. Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Kukushkin, M. On solvability of the Sonin–Abel equation in the Weighted Lebesgue space. Fractal Fract. 2021, 5, 77. [Google Scholar] [CrossRef]
- Derbissaly, B.; Kirane, M.; Sadybekov, M. Inverse source problem for two-term time-fractional diffusion equation with nonlocal boundary conditions. Fractal Fract. 2024, 183, 114897. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Jia, M.; Yu, Z. Piecewise conformable fractional impulsive differential system with delay: Existence, uniqueness and Ulam stability. J. Appl. Math. Comput. 2024, 70, 1543–1570. [Google Scholar] [CrossRef]
- Rahul, R.; Halder, S.; Kazemi, M.; Samei, M.E. A study on solvability and an iterative method for infinite systems of fractional integro-differential equations. Bol. Soc. Mat. Mex. 2025, 31, 73. [Google Scholar] [CrossRef]
- Leibenson, L.S. General problem of the movement of a compressible fluid in a porous medium. Izv. Akad. Nauk Kirgiz. SSSR 1983, 9, 7–10. [Google Scholar]
- Li, K.; Liu, B. Grow-up of weak solutions in a p-Laplacian pseudo-parabolic problem. Nonlinear Anal. Real World Appl. 2022, 68, 103657. [Google Scholar] [CrossRef]
- Amoroso, E.; Bonanno, G.; Perera, K. Nonlinear elliptic p-Laplacian equations in the whole space. Nonlinear Anal. 2023, 236, 113364. [Google Scholar] [CrossRef]
- Gallo, M.; Squassina, M. Concavity and perturbed concavity for p-Laplace equations. J. Differ. Equ. 2025, 440, 113452. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, W.; Nieto, J.J.; Wang, G. An anisotropic tempered fractional p-Laplacian model involving logarithmic nonlinearity. Evol. Equ. Control Theory 2024, 13, 1–11. [Google Scholar] [CrossRef]
- Jong, K. Existence and uniqueness of positive solutions of a kind of multi-point boundary value problems for nonlinear fractional differential equations with p-Laplacian operator. Mediterr. J. Math. 2018, 15, 129. [Google Scholar] [CrossRef]
- Jong, K.; Choi, H.; Ri, Y. Existence of positive solutions of a class of multi-point boundary value problems for p-Laplacian fractional differential equations with singular source terms. Commun. Nonlinear Sci. Numer. Simulat. 2019, 72, 272–281. [Google Scholar] [CrossRef]
- Cheng, T.; Xu, X. Existence results for multi-point boundary value problem to singular fractional differential equations with a positive parameter. J. Appl. Math. Comput. 2022, 68, 3721–3746. [Google Scholar] [CrossRef]
- Henderson, J.; Luca, R.; Tudorache, A. On a fractional differential equation with r-Laplacian operator and nonlocal boundary conditions. Mathematics 2022, 10, 3139. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y. Solvability of a fractional boundary value problem with problem with p-Laplacian operator on an infinite interval. J. Appl. Anal. Comput. 2023, 13, 3087–3106. [Google Scholar] [CrossRef]
- Samei, M.E.; Karimi, L.; Kaabar, M.K.A. To investigate a class of multi-singular pointwise defined fractional q–integro-differential equation with applications. AIMS Math. 2022, 7, 7781–7816. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Liu, X.; Jia, M. Positive solutions of fractional p-Laplacian equations with integral boundary value and two parameters. J. Inequal. Appl. 2020, 2020, 2. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, J.; Dong, S.; Hou, X. Existence of multiple positive solutions for Caputo fractional differential equation with infinite-point boundary value conditions. J. Appl. Anal. Comput. 2022, 12, 1786–1800. [Google Scholar] [CrossRef]
- Chu, L.; Hu, W.; Su, Y.; Yun, Y. Existence and uniqueness of solutions to four-point impulsive fractional differential equations with p-Laplacian operator. Mathematics 2022, 10, 1852. [Google Scholar] [CrossRef]
- Rezapour, S.; Boulfoul, A.; Tellab, B.; Samei, M.E.; Etemad, S.; George, R. Fixed point theory and the Liouville-Caputo integro-differential FBVP with multiple nonlinear terms. J. Funct. Spaces 2022, 2022, 6713533. [Google Scholar] [CrossRef]
- Nazari, S.; Samei, M.E. An existence of the solution for generalized system of fractional q-differential inclusions involving p-Laplacian operator and sequential derivatives. Bound. Value Probl. 2024, 2024, 117. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Wang, G. Monotone iterative method for nonlinear fractional p-Laplacian differential equation in terms of Ψ-Caputo fractional derivative equipped with a new class of nonlinear boundary conditions. Math. Methods Appl. Sci. 2022, 45, 967–976. [Google Scholar] [CrossRef]
- Hasanov, M. Initial value problems for fractional p-Laplacian equations with singularity. AIMS Math. 2024, 9, 12800–12813. [Google Scholar] [CrossRef]
- Wang, G.; Yuan, H.; Baleanu, D. Stability analysis, existence and uniqueness of solutions for a fractional conformable p-Laplacian coupled boundary value problem on the disilane graph. Qual. Theory Dyn. Syst. 2024, 23, 218. [Google Scholar] [CrossRef]
- Etemad, S.; Iqbal, I.; Samei, M.E.; Rezapour, S.; Alzabut, J.; Sudsutad, W.; Goksel, I. Some inequalities on multi-functions for applying in the fractional Caputo–Hadamard jerk inclusion system. J. Inequal. Appl. 2022, 2022, 84. [Google Scholar] [CrossRef]
- Mursaleen, M.; Savaş, E. Solvability of an infinite system of fractional differential equations with p-Laplacian operator in a new tempered sequence space. J. Pseudo-Differ. Oper. Appl. 2023, 14, 57. [Google Scholar] [CrossRef]
- Guran, L.; Mitrović, Z.; Reddy, G.; Belhenniche, A.; Radenović, S. Applications of a fixed point result for solving nonlinear fractional and integral differential equations. Fractal Frac. 2021, 5, 211. [Google Scholar] [CrossRef]
- Bekri, Z.; Aljohani, S.; Samei, M.; Akgül, A.; Belhenniche, A.; Aloqaily, A.; Mlaiki, N. Unique solution analysis for generalized Caputo-type fractional BVP via Banach contraction. Eur. J. Pure Appl. Math. 2025, 18, 5979. [Google Scholar] [CrossRef]
- Liu, X.; Jia, M.; Xiang, X. On the solvability of a fractional differential equation model involving the p-Laplacian operator. Comput. Math. Appl. 2012, 64, 3267–3275. [Google Scholar] [CrossRef]
- Liu, X.; Jia, M.; Ge, W. The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator. Appl. Math. Lett. 2017, 65, 56–62. [Google Scholar] [CrossRef]
- Wei, C.; Liu, X.; Jia, M.; Zhang, L. The monotone iterative method for the integral boundary value problems of fractional p-Laplacian equations with delay. Int. J. Nonlinear Sci. Numer. Simul. 2021, 22, 23–32. [Google Scholar] [CrossRef]
- Liu, X.; Jia, M. The positive solutions for integral boundary value problem of fractional p-Laplacian equation with mixed derivatives. Mediterr. J. Math. 2017, 14, 94. [Google Scholar] [CrossRef]
- Ahmad, B.; Agarwal, R.P.; Broom, A.; Alsaedi, A. On a coupled integro-differential system involving mixed fractional derivatives and integrals of different orders. Acta Math. Sci. 2021, 41, 1366–1384. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Ntouyas, S.K.; Tariboon, J. Existence of positive solutions to boundary value problems with mixed Riemann–Liouville and Quantum fractional derivatives. Fractal Fract. 2023, 7, 685. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zhang, X.; Wu, Y. Positive solutions of an abstract fractional semipositone differential system model for bioprocesses HIV infection. Appl. Math. Comput. 2015, 258, 312–324. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Wiwatanapataphee, B. The spectral analysis for a singular fractional differential equation with a signed measure. Appl. Math. Comput. 2015, 257, 252–263. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.; Wu, Y. Existence and uniqueness of solutions for a class of higher-order fractional boundary value problems with the nonlinear term satisfying some inequalities. J. Inequal. Appl. 2020, 2020, 196. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.; Kong, D.; Wu, Y. Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations with mixed-type boundary value conditions. Nonlinear Anal. Model. Control 2019, 24, 73–94. [Google Scholar] [CrossRef]
- Guo, L.; Liu, L.; Wu, Y. Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters. Nonlinear Anal. Model. Control 2018, 23, 182–203. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A.; Alalwi, K.A. Sequential fractional differential equations with parametric type anti-periodic boundary conditions. J. Appl. Anal. Comput. 2025, 15, 2921–2934. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Lv, H. Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 2005, 311, 495–505. [Google Scholar] [CrossRef]







| t | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
|---|---|---|---|---|---|---|
| 0 | 0.0037 | 0.0538 | 0.2462 | 0.6963 | 1.5000 | |
| The upper bound of | 0 | 0.3000 | 0.6000 | 0.9000 | 1.2000 | 1.5000 |
| t | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
|---|---|---|---|---|---|---|
| 0 | 0.1257 | 0.3265 | 0.5186 | 0.6467 | 0.6869 | |
| The lower bound of | 0 | 0.0023 | 0.0061 | 0.0098 | 0.0123 | 0.0120 |
| t | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
|---|---|---|---|---|---|---|
| 0 | 0.0000 | 0.0024 | 0.0343 | 0.2293 | 1.0000 | |
| The upper bound of | 0 | 0.7665 | 1.7610 | 2.8646 | 4.0457 | 5.2879 |
| t | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
|---|---|---|---|---|---|---|
| 0 | 0.0000 | 0.0001 | 0.0050 | 0.0763 | 0.6353 | |
| The upper bound of | 0 | 0.0673 | 0.1903 | 0.3496 | 0.5383 | 0.7523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Liu, L.; Gu, H.; Ma, L.; Wu, Y. Existence and Uniqueness of Solutions for Singular Fractional Integro-Differential Equations with p-Laplacian and Two Kinds of Fractional Derivatives. Axioms 2025, 14, 890. https://doi.org/10.3390/axioms14120890
Wang F, Liu L, Gu H, Ma L, Wu Y. Existence and Uniqueness of Solutions for Singular Fractional Integro-Differential Equations with p-Laplacian and Two Kinds of Fractional Derivatives. Axioms. 2025; 14(12):890. https://doi.org/10.3390/axioms14120890
Chicago/Turabian StyleWang, Fang, Lishan Liu, Haibo Gu, Lina Ma, and Yonghong Wu. 2025. "Existence and Uniqueness of Solutions for Singular Fractional Integro-Differential Equations with p-Laplacian and Two Kinds of Fractional Derivatives" Axioms 14, no. 12: 890. https://doi.org/10.3390/axioms14120890
APA StyleWang, F., Liu, L., Gu, H., Ma, L., & Wu, Y. (2025). Existence and Uniqueness of Solutions for Singular Fractional Integro-Differential Equations with p-Laplacian and Two Kinds of Fractional Derivatives. Axioms, 14(12), 890. https://doi.org/10.3390/axioms14120890

