Foundations of the Preisach Operator in Real Options Problems with Subscription Cost and Heterogeneous Population of Consumers
Abstract
1. Introduction
2. Model
2.1. Dynamics
2.2. Variational Inequality
2.3. Two-Threshold Solution
2.4. Heterogeneous Market and Firm Problem
2.5. Relation to Preisach Model
3. Results
3.1. Cost-Free Enrollment/Cancellation Benchmark
3.2. Existence of a Two-Threshold Solution
3.3. Asymptotic Approximation of the Two-Threshold Solution
3.4. Firm Problem: One Consumer
- (i)
- (ii)
- If , then the firm’s value function satisfiesThe firm maximizes its expected pay-off by settingi.e., zero enrollment cost, while the optimal flow rate and cancellation cost satisfyleading to the two-threshold behavior of the consumer with the initial state “subscribed". Moreover, setting
3.5. Firm Problem: Two Consumers
- (i)
- (ii)
- If , then value function of the firm problem with two consumers satisfies Equation (84) with for . The firm maximizes its expected pay-off by setting , while the optimal flow rate and cancellation cost satisfy (87), leading to the two-threshold behavior of both consumers, each adopting the initial state “subscribed". Moreover, parameters (88) ensure that the firm’s pay-off satisfies (89); i.e., it is asymptotically close to the value function.
3.6. Firm Problem with N Consumers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bertotti, G.; Mayergoyz, I. (Eds.) The Science of Hysteresis; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1–3. [Google Scholar]
- Cross, R.; Darby, J.; Ireland, J.; Piscitelli, L. Hysteresis and unemployment: A preliminary investigation. In The Science of Hysteresis; Bertotti, G., Mayergoyz, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 667–699. [Google Scholar]
- Cross, R.; McNamara, H.; Kalachev, L.; Pokrovskii, A. Hysteresis and post Walrasian economics. Discret. Contin. Dyn. Syst. B 2013, 18, 377–401. [Google Scholar] [CrossRef]
- Subscription Service Statistics and Costs, 2024, C + R Research Report. Available online: https://www.crresearch.com/blog/subscription-service-statistics-and-costs/ (accessed on 25 August 2025).
- FTC Final Click-to-Cancel Rule. 2024. Available online: https://www.ftc.gov/news-events/news/press-releases/2024/10/federal-trade-commission-announces-final-click-cancel-rule-making-it-easier-consumers-end-recurring/ (accessed on 25 August 2025).
- Bensoussan, A.; Lions, J.-L. Applications of Variational Inequalities in Stochastic Control; North-Holland Publishing Company: North-Holland, AL, USA, 1982. [Google Scholar]
- Acharya, S.; Bensoussan, A.; Rachinskii, D.; Rivera, A. Real options problem with nonsmooth obstacle. SIAM J. Financ. Math. 2021, 12, 1508–1552. [Google Scholar] [CrossRef]
- Bensoussan, A.; Chevalier-Roignant, B.; Rivera, A. Does performance-sensitive debt mitigate debt overhang? J. Econom. Dynam. Control 2021, 131, 104203. [Google Scholar] [CrossRef]
- Preisach, F. Über die magnetische Nachwirkung. Z. Phys. 1935, 94, 277–302. [Google Scholar] [CrossRef]
- Krasnosel’skii, M.A.; Pokrovskii, A.V. Systems with Hysteresis; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Mayergoyz, I.D. Mathematical Models of Hysteresis and Their Applications: Electro-magnetism; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Visintin, A. Differential Models of Hysteresis; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Krejčí, P.; Kuhnen, K. Inverse control of systems with hysteresis and creep. IEE Proc.-Control Theory Appl. 2001, 148, 185–192. [Google Scholar] [CrossRef]
- Kuhnen, K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach. Eur. J. Control 2003, 9, 407–418. [Google Scholar] [CrossRef]
- Al-Bender, F.; Lampaert, V.; Swevers, J. The generalized Maxwell-slip model: A novel model for friction simulation and compensation. IEEE Trans. Autom. Control 2005, 50, 1883–1887. [Google Scholar] [CrossRef]
- Haverkamp, R.; Reggiani, P.; Rossand, P.J.; Parlange, J.-Y. Soil water hysteresis prediction model based on theory and geometric scaling. In Environmental Mechanics: Water Mass and Energy Transfer in the Biosphere; Smiles, D., Warrick, A.W., Eds.; American Geophysical Union: Washington, DC, USA, 2002; pp. 213–246. [Google Scholar]
- Apicella, V.; Clemente, C.S.; Davino, D.; Leone, D.; Visone, C. Review of modeling and control of magnetostrictive actuators. Actuators 2019, 8, 45. [Google Scholar] [CrossRef]
- Iyer, R.V.; Tan, X.; Krishnaprasad, P.S. Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators. IEEE Trans. Autom. Control 2005, 50, 798–810. [Google Scholar] [CrossRef]
- Janaideh, M.A.; Rakheja, S.; Su, C.Y. An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans. Mechatron. 2011, 16, 734–744. [Google Scholar] [CrossRef]
- Kaltenbacher, B.; Krejčí, P. A thermodynamically consistent phenomenological model for ferroelectric and ferroelastic hysteresis. ZAMM Z. Angew. Math. Mech. 2016, 96, 874–891. [Google Scholar] [CrossRef]
- Tan, X.; Baras, J.S. Modeling and control of hysteresis in magnetostrictive actuators. Automatica 2004, 40, 1469–1480. [Google Scholar] [CrossRef]
- Adamonis, J.; Göcke, M. Modeling economic hysteresis losses caused by sunk adjustment costs. J. Post Keynes. Econ. 2019, 42, 299–318. [Google Scholar] [CrossRef]
- Cross, R.; Grinfeld, M.; Lamba, H. Hysteresis and economics. IEEE Control Syst. Mag. 2009, 29, 30–43. [Google Scholar]
- Werner, L.M. Hysteresis losses in the Preisach framework. Empir. Econ. 2018, 58, 1249–1278. [Google Scholar] [CrossRef]
- Mayergoyz, I.D.; Korman, C. Hysteresis and Neural Memory; World Scientific: Singapore, 2019. [Google Scholar]
- Guan, R.; Kopfová, J.; Rachinskii, D. Global stability of SIR model with heterogeneous transmission rate modeled by the Preisach operator. SIAM J. Appl. Dyn. Syst. 2024, 23, 1199–1241. [Google Scholar] [CrossRef]
- Kopfová, J.; Nábelková, P.; Rachinskii, D.; Rouf, S. Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator. J. Math. Biol. 2021, 83, 11. [Google Scholar] [CrossRef] [PubMed]
- Cross, R.; Grinfeld, M.; Lamba, H. A rate-dependent probabilistic model of hysteresis. Mathematics 2024, 12, 3924. [Google Scholar] [CrossRef]
- Friedman, G.; McCarthy, S.; Rachinskii, D. Hysteresis can grant fitness in stochastically varying environment. PLoS ONE 2014, 9, e103241. [Google Scholar] [CrossRef] [PubMed]
- Rios, L.A.; Rachinskii, D.; Cross, R. A model of hysteresis arising from social interaction within a firm. J. Phys. Conf. Ser. 2017, 811, 012011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachinskii, D.; Rachinskiy, L.; Rivera, A. Foundations of the Preisach Operator in Real Options Problems with Subscription Cost and Heterogeneous Population of Consumers. Axioms 2025, 14, 829. https://doi.org/10.3390/axioms14110829
Rachinskii D, Rachinskiy L, Rivera A. Foundations of the Preisach Operator in Real Options Problems with Subscription Cost and Heterogeneous Population of Consumers. Axioms. 2025; 14(11):829. https://doi.org/10.3390/axioms14110829
Chicago/Turabian StyleRachinskii, Dmitrii, Lev Rachinskiy, and Alejandro Rivera. 2025. "Foundations of the Preisach Operator in Real Options Problems with Subscription Cost and Heterogeneous Population of Consumers" Axioms 14, no. 11: 829. https://doi.org/10.3390/axioms14110829
APA StyleRachinskii, D., Rachinskiy, L., & Rivera, A. (2025). Foundations of the Preisach Operator in Real Options Problems with Subscription Cost and Heterogeneous Population of Consumers. Axioms, 14(11), 829. https://doi.org/10.3390/axioms14110829
