Fractional-Order Delay Differential Equations: Existence, Uniqueness, and Ulam–Hyers Stability
Abstract
1. Introduction
2. Preliminaries
- (i):
- N has a unique fixed point , i.e., where .
- (ii):
- the sequence of iterates converges to for every initial point .
- (i):
- (ii):
3. Main Results
- :
- verifying on .
- :
- There exists a positive constant P such that the function f satisfies the Lipschitz condition:
- :
- .
- : Next, we extend the interval to . Consider the complete normed space of continuous functions , with the norm defined as follows:
- : By iterating this process up to the nth step, we can construct a continuous mapping and , similar to the previous steps, which yields a unique solution to Equation (4) on the interval . □
4. Ulam–Hyers Stability Analysis
5. Numerical Simulations
5.1. Example
5.2. Example
5.3. Example
5.4. Example (Demonstrating Ulam–Hyers Stability)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korichi, Z.; Souigat, A.; Bekhouche, R.; Meftah, M.T. Solution of the fractional Liouville equation by using Riemann–Liouville and Caputo derivatives in statistical mechanics. Theor. Math. Phys. 2024, 218, 336–345. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Cesarano, C.; Iqbal, N.; Sidaoui, R.; Ali, E.E. The exact solutions for the fractional Riemann wave equation in quantum mechanics and optics. Phys. Scr. 2024, 99, 085245. [Google Scholar] [CrossRef]
- Aitbrahim, A.; El Ghordaf, J.; El Hajaji, A.; Hilal, K.; Valdes, J.E.N. A comparative analysis of Conformable, non-conformable, Riemann-Liouville, and Caputo fractional derivatives. Eur. J. Pure Appl. Math. 2024, 17, 1842–1854. [Google Scholar] [CrossRef]
- Asadzade, J.A.; Mahmudov, N.I. Finite time stability analysis for fractional stochastic neutral delay differential equations. J. Appl. Math. Comput. 2024, 70, 5293–5317. [Google Scholar] [CrossRef]
- ur Rahman, G.; Wahid, F.; Gomez-Aguilar, J.F.; Ali, A. Analysis of multi-term arbitrary order implicit differential equations with variable type delay. Phys. Scr. 2024, 99, 115246. [Google Scholar] [CrossRef]
- Guan, X.; Si, J.; Wang, Z. Existence of Analytic Solutions to Linear Delay Differential Equations. Results Math. 2025, 80, 20. [Google Scholar] [CrossRef]
- Adel, M.; Khader, M.M.; Algelany, S.; Aldwoah, K. An accurate approach to simulate the fractional delay differential equations. Fractal Fract. 2023, 7, 671. [Google Scholar] [CrossRef]
- Majee, S.; Jana, S.; Kar, T.K.; Bhunia, B. Complex dynamics of a fractional-order delayed epidemic model incorporating waning immunity and optimal control. Eur. Phys. J. Spec. Top. 2025, 234, 1823–1850. [Google Scholar] [CrossRef]
- Kartal, N. Fractional order generalized Richards growth model with delay arguments on coupled networks. Comput. Ecol. Softw. 2024, 14, 137–147. [Google Scholar]
- Ahmed, A.I.; Al-Sharif, M.S. An effective numerical method for solving fractional delay differential equations using fractional-order Chelyshkov functions. Bound. Value Probl. 2024, 2024, 107. [Google Scholar] [CrossRef]
- Aibinu, M.O. Approximate analytical solutions to delay fractional differential equations with Caputo derivatives of fractional variable orders and applications. Int. J. Nonlinear Anal. Appl. 2024, 15, 1–11. [Google Scholar]
- Li, S.; Khan, S.; Riaz, M.B.; AlQahtani, S.A.; Alamri, A.M. Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: A comprehensive stability analysis. Sci. Rep. 2024, 14, 6930. [Google Scholar] [CrossRef]
- Dragicevic, D. Generalized Dichotomies and Hyers–Ulam Stability. Results Math. 2024, 79, 37. [Google Scholar] [CrossRef]
- Selvam, A.; Sabarinathan, S.; Sooppy Nisar, K.; Ravichandran, C.; Senthil Kumar, B.V. Results on Ulam-type stability of linear differential equation with integral transform. Math. Methods Appl. Sci. 2024, 47, 2311–2323. [Google Scholar] [CrossRef]
- Selvam, A.; Sabarinathan, S.; Pinelas, S.; Suvitha, V. Existence and stability of Ulam–Hyers for neutral stochastic functional differential equations. Bull. Iran. Math. Soc. 2024, 50, 1. [Google Scholar] [CrossRef]
- Kundu, S.; Bora, S.N. On Ulam type stability of the solution to a ψ-Hilfer abstract fractional functional differential equation. Phys. Scr. 2025, 100, 045235. [Google Scholar] [CrossRef]
- Shah, R.; Irshad, N. Ulam–Hyers–Mittag–Leffler Stability for a Class of Nonlinear Fractional Reaction–Diffusion Equations with Delay. Int. J. Theor. Phys. 2025, 64, 20. [Google Scholar] [CrossRef]
- Tunc, O. New Results on the Ulam–Hyers–Mittag–Leffler Stability of Caputo Fractional-Order Delay Differential Equations. Mathematics 2024, 12, 1342. [Google Scholar] [CrossRef]
- An, W.; Luo, D.; Huang, J. Relative Controllability and Hyers–Ulam Stability of Riemann–Liouville Fractional Delay Differential System. Qual. Theory Dyn. Syst. 2024, 23, 180. [Google Scholar] [CrossRef]
- Ali, A.; Bibi, F.; Ali, Z.; Shah, K.; Absalla, B.; Abdeljawad, T. Investigation of Existence and Ulam’s type Stability for Coupled Fractal Fractional Differential Equations. Eur. J. Pure Appl. Math. 2025, 18, 5963. [Google Scholar] [CrossRef]
- Kiskinov, H.; Madamlieva, E.; Zahariev, A. Hyers–Ulam and Hyers–Ulam–Rassias stability for linear fractional systems with Riemann–Liouville derivatives and distributed delays. Axioms 2023, 12, 637. [Google Scholar] [CrossRef]
- Dimitrov, N.D.; Jonnalagadda, J.M. Existence, uniqueness, and stability of solutions for Nabla fractional difference equations. Fractal Fract. 2024, 8, 591. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. A coupled system of fractional difference equations with anti-periodic boundary conditions. Stud. Univ. Babeş-Bolyai, Math. 2023, 68, 387–398. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Laledj, N.; Zhou, Y. Existence and Ulam stability for implicit fractional q-difference equations. Adv. Differ. Equ. 2019, 2019, 480. [Google Scholar] [CrossRef]
- Balaji, A.; Tiwari, S.; Vyasarayani, C.P. Galerkin approximations for fractional-order delay-differential equations with constant or time-periodic coefficients. J. Comput. Nonlinear Dyn. 2025, 20, 111005. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M. Existence and Ulam-Type Stability for Fractional Multi-Delay Differential Systems. Fractal Fract. 2025, 9, 288. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. (Eds.) Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equation; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Rus, I.A. Picard operators and applications. Sci. Math. Jpn. 2003, 58, 191–219. [Google Scholar]
- Rus, I.A. Fixed points, upper and lower fixed points: Abstract Gronwall lemmas. Carpathian J. Math. 2004, 20, 125–134. [Google Scholar]
- Henry, D. Geometric Theory of Semilinear Parabolic Equations; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; Volume 840. [Google Scholar]
- Wang, J.; Zhang, Y. Ulam–Hyers–Mittag-Leffler stability of fractional-order delay differential equations. Optimization 2014, 63, 1181–1190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafeez, F.; Jeelani, M.B.; Alhamzi, G. Fractional-Order Delay Differential Equations: Existence, Uniqueness, and Ulam–Hyers Stability. Axioms 2025, 14, 817. https://doi.org/10.3390/axioms14110817
Hafeez F, Jeelani MB, Alhamzi G. Fractional-Order Delay Differential Equations: Existence, Uniqueness, and Ulam–Hyers Stability. Axioms. 2025; 14(11):817. https://doi.org/10.3390/axioms14110817
Chicago/Turabian StyleHafeez, Farva, Mdi Begum Jeelani, and Ghaliah Alhamzi. 2025. "Fractional-Order Delay Differential Equations: Existence, Uniqueness, and Ulam–Hyers Stability" Axioms 14, no. 11: 817. https://doi.org/10.3390/axioms14110817
APA StyleHafeez, F., Jeelani, M. B., & Alhamzi, G. (2025). Fractional-Order Delay Differential Equations: Existence, Uniqueness, and Ulam–Hyers Stability. Axioms, 14(11), 817. https://doi.org/10.3390/axioms14110817

