Next Article in Journal
Hybrid Euler–Lagrange Approach for Fractional-Order Modeling of Glucose–Insulin Dynamics
Previous Article in Journal
Scator Holomorphic Functions
Previous Article in Special Issue
Stability Analysis of SEIAR Model with Age Structure Under Media Effect
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Double Wronskian Representation of the Nth-Order Solutions to the Davey–Stewartson Equations

Unité Mixte de Recherche 5584, Institut de Mathématiques de Bourgogne, Centre National de la Recherche Scientifique, Université Bourgogne Europe, 21000 Dijon, France
Axioms 2025, 14(11), 799; https://doi.org/10.3390/axioms14110799
Submission received: 19 September 2025 / Revised: 23 October 2025 / Accepted: 28 October 2025 / Published: 30 October 2025

Abstract

Solutions to the Davey–Stewartson equations (DS) in terms of the determinants of order 2 N depending on 4 N real parameters are constructed. The Darboux transformation is used to construct solutions of order N to this equation. We obtain a representation of the solutions to the equations (DS) in terms of two Wronskians. We obtain what we call a double Wronskian representation of the solutions to the (DS) equations. With this method, some particular explicit solutions for the first orders are constructed.
MSC:
2010 AMS; 35C99; 35Q55; 35L05; 76M99; 78M99

1. Introduction

We consider the Davey–Stewartson system (DS) which can be written in the form
i v t v x x α 2 v y y + 2 κ α 2 | v | 2 v S v = 0 , α 2 S x x S y y 4 κ ( | v | 2 ) x x = 0
This system was derived by Benney and Reskes in 1969 [1], then by Davey and Stewartson in 1974 [2].
In the Equation (1), v is the amplitude of the wave, and the field S is related to the mean flow.
The case κ = ± 1 , α = 1 is usually called the DS-I system; the case κ = ± 1 , α = i is referred to as the DS-II system.
In the case α = 1 (DSI equation), surface tension is more important than gravity in wave derivation. Conversely, if α = 1 (DSII equation), it is the contrary.
These equations are generalizations of the nonlinear Schrödinger (NLS) equation which describes the evolution of a wave packet on water of finite depth in fluid mechanics [3].
These equations are also used in other areas such plasma physics [4], nonlinear optics [5], Bose–Einstein condensate [6].
The (DS) equations have been studied in a lot of works.
Anker and Freeman [7] used the inverse scattering method to construct single and txo solutions in particular.
Nakamura [8] proposed in 1983 some solutions in terms of Hemite polynomials and Airy functions, representing exploding and decaying solutions.
Boiti et al. [9] constructed solitons and multisolitons solutions to the DS equation in simple cases, which exponentially decay in spatial dimensions.
The Hirota bilinear method was used in the paper [10] to construct solutions to this equation in terms of Wronskians that decay exponentially in all directions, called dromions. Some figures were presented without providing explicit solutions.
The Hirota bilinear method was also applied in [11] to get rational solutions to the (DS) equation, and some representations of the solutions in the ( x , y ) plane for different values of time and parameters were given until order 3 but without giving explicit solutions.
An algebro-geometric approach was carried out by Malanyuk in the article [12], where finite gap solutions were constructed in terms of Riemann theta functions. No explicit solution was built.
More recently, an article [13] proposes doubly localized solutions highlighting rogue waves using the bilinear Hirota method. Here again, some figures were created without giving the explicit expressions of the solutions.
In the paper [14], the N-breather solution of the DSI and DSII equations is constructed in particular, describing the nonlinear interaction of N unstable modes over the constant background solution.
The purpose of the paper is to construct explicit solutions to the DS equation obtained by means of the Darboux transformation. This method initiated by V.B. Matveev is perfectly exposed in the article [15], for readers who would like to obtain details of the framework and the notations used.
We present an algebraic construction of the solutions of the (DS) system based on the results of Salle [16] using a generalized Darboux transformation. It is a method for generating solutions to linear systems associated with DS equations. The auxiliary linear system is defined by matrices of order 2. The Darboux transformation is applied to obtain solutions using covariance results.
Here we present solutions to (DS) equations of order N depending on 4 N real parameters in terms of the determinants. We give the complete formulas of the solutions for the order N. The method presented in the article [16] is slightly different since it is the binary version which is used, and this method involves integrals. However, no general formulation of the solutions is given and, in particular, no explicit solution is constructed.
Here, we construct explicit solutions to the DSI equation for the first orders.

2. Generalized Darboux Transformation

2.1. Auxiliary Linear System

Following the ideas of [16], we consider the following 2-order matrices:
J = α 0 0 α , U = 0 u v 0 ,
V = w 2 + i Q 2 i α 2 ( α u x + u y ) i α 2 ( α v x v y ) w 2 i Q 2 , Ψ = ψ 1 ψ 2 ϕ 1 ϕ 2 .
We consider the following auxiliary linear system:
Ψ y = J Ψ x + U Ψ , Ψ t = 2 i α 1 J Ψ x x + 2 i α 1 U Ψ x + V Ψ .
It is clear that the consistency condition of the system (4), i.e., the equality ( Ψ y ) t = ( Ψ t ) y , gives the Davey–Stewartson system (1).
In particular, we get the following relation between Q of V and S of one of the equations of (1).
Q = 2 κ α 2 | u | 2 + S .

2.2. Darboux Dressing

We consider an arbitrary (matrix) function Ψ :
Ψ = ψ 1 ψ 2 ϕ 1 ϕ 2
solution of the linear system (4).
We consider the following Darboux transformation which is different from the one proposed in [16]:
Ψ [ 1 ] = Ψ x S 1 Ψ .
The matrix S 1 is defined by
S 1 = s 1 s 2 t 1 t 2 ,
with elements
s 1 = ( ψ 1 ) x ϕ 2 ϕ 1 ( ψ 2 ) x ψ 1 ϕ 2 ϕ 1 ψ 2 , s 2 = ( ψ 2 ) x ψ 1 ψ 2 ( ψ 1 ) x ψ 1 ϕ 2 ϕ 1 ψ 2 ,
t 1 = ( ϕ 1 ) x ϕ 2 ϕ 1 ( ϕ 2 ) x ψ 1 ϕ 2 ϕ 1 ψ 2 , t 2 = ( ϕ 2 ) x ψ 1 ψ 2 ( ϕ 1 ) x ψ 1 ϕ 2 ϕ 1 ψ 2 .
Then, we get the following covariance result
Proposition 2.1.
The function Ψ [ 1 ] defined by (7)
Ψ [ 1 ] = Ψ x S 1 Ψ
is a solution of the linear system
Ψ y = J Ψ x + U [ 1 ] Ψ , Ψ t = 2 i α 1 J Ψ x x + 2 i α 1 U [ 1 ] Ψ x + V [ 1 ] Ψ .
with
U [ 1 ] = U + [ J , S 1 ] a n d   V [ 1 ] = V + 2 i α 1 ( J ( S 1 ) x + ( S 1 ) y ) ,
and
S 1 = ( ψ 1 ) x ϕ 2 ϕ 1 ( ψ 2 ) x ψ 1 ϕ 2 ϕ 1 ψ 2 ( ψ 2 ) x ψ 1 ψ 2 ( ψ 1 ) x ψ 1 ϕ 2 ϕ 1 ψ 2 , ( ϕ 1 ) x ϕ 2 ϕ 1 ( ϕ 2 ) x ψ 1 ϕ 2 ϕ 1 ψ 2 ( ϕ 2 ) x ψ 1 ψ 2 ( ϕ 1 ) x ψ 1 ϕ 2 ϕ 1 ψ 2 . ,
Remark 2.1.
As usual, [ A , B ] is the commutator defined by [ A , B ] = A B B A .
Proof. 
It is sufficient to replace the expression of Ψ [ 1 ] in the equations of the associated linear system (4) and to identify the terms in Ψ and Ψ x to get the expressions of U [ 1 ] and V [ 1 ] .
The expressions of the terms of S 1 come from the resolution of two systems of two equations coming from the fact that Ψ solves the associated system (4). □

2.3. Iterated Darboux Transformation

We consider N matrices Ψ j of order 2 defined by
Ψ j = ψ 2 j 1 ψ 2 j ϕ 2 j 1 ϕ 2 j ,
for 1 j N solutions to the linear system (4).
We define the following 2 N -order determinant Δ by
Δ = x N 1 ψ 1 x N 1 ϕ 1 x N 2 ψ 1 x N 2 ϕ 1 ψ 1 ϕ 1 x N 1 ψ 2 x N 1 ϕ 2 x N 2 ψ 2 x N 2 ϕ 2 ψ 2 ϕ 2 x N 1 ψ 2 N x N 1 ϕ 2 N x N 2 ψ 2 N x N 2 ϕ 2 N ψ 2 N ϕ 2 N .
The determinants Δ ( k ) and Δ ˜ ( k ) are the determinants constructed from Δ in which the column k has been replaced, respectively, by
x N ψ 1 x N ψ 2 x N ψ 2 N , x N ϕ 1 x N ϕ 2 x N ϕ 2 N .
The matrices S j for 1 j N are defined by
S j = s 2 j 1 s 2 j t 2 j 1 t 2 j .
The function Ψ is a solution to the linear system (4).
We define the Nth iterated Darboux transformation by
Ψ [ N ] = x N Ψ S 1 x N Ψ S [ N ] Ψ .
Then, we get the following covariance result:
Theorem 2.1.
The function Ψ [ N ] defined by (18)
Ψ [ N ] = x N Ψ S 1 x N Ψ S [ N ] Ψ
is a solution to the linear system (4)
Ψ y = J Ψ x + U [ N ] Ψ , Ψ t = 2 i α 1 J Ψ x x + 2 i α 1 U [ N ] Ψ x + V [ N ] Ψ .
with
U [ N ] = U + [ J , S 1 ] a n d   V [ N ] = V + 2 i α 1 ( ( J S 1 ) x + ( S 1 ) y ) ,
and
S 1 = s 1 s 2 t 1 t 2
with
s 1 = Δ ( 1 ) Δ , s 2 = Δ ( 2 ) Δ ,
t 1 = Δ ˜ ( 1 ) Δ , t 2 = Δ ˜ ( 2 ) Δ
Remark 2.2.
The general formulation of V N was not given in [16]. For this reason, we will give the corresponding proof.
Proof. 
It is sufficient to replace the expression of Ψ [ N ] in the equations of the associated linear system (4) and to identify the terms in x N Ψ and x N 1 Ψ x .
More precisely, replacing Ψ [ N ] in the two equations of the system (4), we get the following relations:
For the first equation of (4), by identifying the terms in x N ψ and x N 1 ψ , we get
U [ N ] = U + [ J , S 1 ]
and
N U x = [ S 1 , U ] + [ S 2 , J ] [ J , S 1 ] S 1 J ( S 1 ) x + ( S 1 ) y .
For the second equation of (4), by identifying the terms in x N ψ , we obtain
V [ N ] = V 2 i α 1 ( [ U , S 1 ] + [ J , S 1 ] S 1 S 2 J + 2 J ( S 1 ) x + N U x .
Replacing N U x by
N U x = [ S 1 , U ] + [ S 2 , J ] [ J , S 1 ] S 1 J ( S 1 ) x + ( S 1 ) y ,
we get the relation
V [ N ] = V + 2 i α 1 ( ( J S 1 ) x + ( S 1 ) y ) .
The 4 N elements of the matrices S j 1 j N are determined by two systems of 2 N equations due to the the fact that the functions Ψ j are solutions to the associated linear system (4).
By applying the Cramer rules, we get the expressions of the matrices S j for 1 j N , and, in particular, those of S 1 , which proves the result. □
Remark 2.3.
In fact, for the resolution of the (DS) equations, we only need the knowledge of the matrix S 1 .

3. Double Wronskian Representation of the Solutions to the (DS) Equation

From the previous study, we deduce solutions to the (DS) equations.
We consider N matrices Ψ j of order 2, defined by
Ψ j = ψ 2 j 1 ψ 2 j ϕ 2 j 1 ϕ 2 j ,
for 1 j N solutions to the linear system (4).
We use the notations defined in (15)
W = x N 1 ψ 1 x N 1 ϕ 1 x N 2 ψ 1 x N 2 ϕ 1 ψ 1 ϕ 1 x N 1 ψ 2 x N 1 ϕ 2 x N 2 ψ 2 x N 2 ϕ 2 ψ 2 ϕ 2 x N 1 ψ 2 N x N 1 ϕ 2 N x N 2 ψ 2 N x N 2 ϕ 2 N ψ 2 N ϕ 2 N .
The determinants W ( k ) and W ˜ ( k ) are the determinants constructed from W in which the column k has been replaced, respectively, by
x N ψ 1 x N ψ 2 x N ψ 2 N , x N ϕ 1 x N ϕ 2 x N ϕ 2 N .
We start from the initial solutions with U = 0 , V = 0 . We restrict to the case where α = 1 and κ = 1 in order to verify the second equation of (1).
So we get the following result:
Theorem 3.1.
The function v defined by
v ( x , y , t ) = 2 W ˜ ( 1 ) W
is a solution of order N to the (DSI) Equation (1) with S defined by
S ( x , y , t ) = 8 W ˜ ( 1 ) W 2 + 2 W ( 1 ) W y 2 W ˜ ( 2 ) W y + 2 W ( 1 ) W x + 2 W ˜ ( 2 ) W y
Remark 3.1.
The determinants W appear as double Wronskians, so we get what we call the double Wronskian representation of the solutions to the (DS) equation. We recover this terminology given in [10] where the bilinear Hirota method was used to construct solutions to the (DS) equation.
Remark 3.2.
For v to be a solution of the (DSI) equation (1), an additional condition must also be imposed. The function u defined
u ( x , y , t ) = 2 W ( 2 ) W
where u = v ¯ .
Proof. 
We have found that
u N = U + [ J , S 1 ] .
With the starting initial condition U = 0 , it gives, in particular,
v ( x , y , t ) = 2 α t 1 = 2 α W ˜ ( 1 ) W
which gives, in particular, the expression of the solution with α = 1
v ( x , y , t ) = 2 W ˜ ( 1 ) W .
Morever, we have found that
V [ N ] = V + 2 i α 1 ( ( J S 1 ) x + ( S 1 ) y ) .
Starting from initial condition V = 0 , it can be written as
V [ N ] = 2 i α 1 ( s 1 ) y + 2 i ( s 1 ) x 2 i α 1 ( s 2 ) y + 2 i ( s 2 ) x 2 i α 1 ( t 1 ) y + 2 i ( t 1 ) x 2 i α 1 ( t 2 ) y + 2 i ( t 2 ) x
So we get the relations
w N + i Q N 2 = 2 i α 1 ( s 1 ) y + 2 i ( s 1 ) x
w N i Q N 2 = 2 i α 1 ( t 2 ) y 2 i ( t 2 ) x
This gives
Q N = 2 α 1 ( s 1 ) y 2 α 1 α 1 ( t 2 ) y + 2 ( s 1 ) x + 2 ( t 2 ) x .
So we get, using the relation between S and Q,
S ( x , y , t ) = Q N + 2 κ α 1 | v ( x , y , t ) | 2 ,
which can be rewritten as
S ( x , y , t ) = 8 κ α 2 W ˜ ( 1 ) W 2 + 2 α 1 W ( 1 ) W y 2 α 1 W ˜ ( 2 ) Δ y + 2 W ( 1 ) W x + 2 W ˜ ( 2 ) W y ,
which gives, with κ = α , α = 1 ,
S ( x , y , t ) = 8 W ˜ ( 1 ) W 2 + 2 W ( 1 ) W y 2 W ˜ ( 2 ) W y + 2 W ( 1 ) W x + 2 W ˜ ( 2 ) W y .
For the additional condition, one deduces, from the compatibility conditions of the initial system expressing Ψ y and Ψ t , the following relations:
w y = i α Q x 2 i α 1 ( u v ) x ,
and
w x = α 1 Q y + 2 i α 3 ( u v ) y .
We deduce the relation
w x y = i α Q 2 x 2 i α 1 ( u v ) 2 x = α 1 Q 2 y + 2 i α 3 ( u v ) 2 y .
It can be written
α 2 Q 2 x Q 2 y 2 ( u v ) 2 x + 2 α 2 ( u v ) 2 y .
Using the relation between Q and S,
Q = 2 κ α 2 | v | 2 + S ,
which we can write, for α = κ = 1 ,
S 2 x S 2 y 2 ( | v | 2 + ( u v ) ) 2 x + 2 ( | v | 2 ( u v ) ) 2 y = 0 .
We recover the classical (DSI) equation if v ¯ = u . □

4. Some Explicit Solutions to the DSI Equation

4.1. Choice of the Generating Functions

Among different choices, we take the following simplest functions ψ k and ϕ k defined by
ψ k ( x , y , t ) = c k e a k x + a k y + 2 i a k 2 t
ϕ k ( x , y , t ) = d k e b k x b k y 2 i b k 2 t
With these choices, the previous determinants can be written as
D = a 1 N 1 ψ 1 b 1 N 1 ϕ 1 a 1 N 2 ψ 1 b 1 N 2 ϕ 1 ψ 1 ϕ 1 a 2 N 1 ψ 2 b 2 N 1 ϕ 2 a 2 N 2 ψ 2 b 2 N 2 ϕ 2 ψ 2 ϕ 2 a 2 N N 1 ψ 2 N b 2 N N 1 ϕ 2 N a 2 N N 2 ψ 2 N b 2 N N 2 ϕ 2 N ψ 2 N ϕ 2 N .
The determinants D ( k ) and D ˜ ( k ) are the determinants constructed from Δ in which the column k has been replaced, respectively, by
a 1 N ψ 1 a 2 N ψ 2 a 2 N N ψ 2 N , b 1 N ϕ 1 b 2 N ϕ 2 a 2 N N ϕ 2 N .
Then we have the particular result.
Theorem 4.1.
The function v defined by
v ( x , y , t ) = 2 D ˜ ( 1 ) D
is a solution of order N to the (mDSI) Equation (43)
i v t v x x α 2 v y y + 2 κ α 2 | v | 2 v S v = 0 , S 2 x S 2 y 2 ( | v | 2 + ( u v ) 2 x ) + 2 ( | v | 2 ( u v ) y ) = 0
with S defined by
S ( x , y , t ) = 8 D ˜ ( 1 ) D 2 + 2 D ( 1 ) D y 2 D ˜ ( 2 ) D y + 2 D ( 1 ) D x + 2 D ˜ ( 2 ) D y
and v defined by
u ( x , y , t ) = 2 D ( 2 ) D

4.2. Expression of the Solutions of Order 1

Example 4.1.
The function v ( x , y , t ) defined by
v ( x , y , t ) = 2 e 2 I b 2 2 2 I b 1 2 t + b 1 + b 2 x y d 1 d 2 b 1 b 2 c 1 e 2 I a 1 2 t + x + y a 1 2 b 2 I t b 2 x 2 + y 2 d 2 d 1 e 2 I a 2 2 t + x + y a 2 2 b 1 I t b 1 x 2 + y 2 c 2
with
u ( x , y , t ) = 2 e 2 I a 1 2 + 2 I a 2 2 t + a 1 + a 2 x + y c 1 c 2 a 1 a 2 d 1 e 2 I a 2 2 t + x + y a 2 2 b 1 I t b 1 x 2 + y 2 c 2 c 1 e 2 I a 1 2 t + x + y a 1 2 b 2 I t b 2 x 2 + y 2 d 2
and
S ( x , y , t ) = n S ( x , y , t ) d S ( x , y , t )
n S ( x , y , t ) = 4 d 1 d 2 ( 4 e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( a 1 + a 2 + 3 b 1 + 3 b 2 ) x + y ( a 1 + a 2 3 b 1 3 b 2 ) b 1 2 c 1 c 2 d 1 2 d 2 2 + 4 e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( a 1 + a 2 + 3 b 1 + 3 b 2 ) x + y ( a 1 + a 2 3 b 1 3 b 2 ) b 2 2 c 1 c 2 d 1 2 d 2 2 + e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( a 1 + 3 a 2 + 3 b 1 + b 2 ) x + y ( a 1 + 3 a 2 3 b 1 b 2 ) a 1 2 c 1 c 2 3 d 1 2 + e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( a 1 + 3 a 2 + 3 b 1 + b 2 ) x + y ( a 1 + 3 a 2 3 b 1 b 2 ) a 2 2 c 1 c 2 3 d 1 2 + e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( a 1 + 3 a 2 + 3 b 1 + b 2 ) x + y ( a 1 + 3 a 2 3 b 1 b 2 ) b 1 2 c 1 c 2 3 d 1 2 + e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( a 1 + 3 a 2 + 3 b 1 + b 2 ) x + y ( a 1 + 3 a 2 3 b 1 b 2 ) b 2 2 c 1 c 2 3 d 1 2 + e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( 3 a 1 + a 2 + b 1 + 3 b 2 ) x + 3 y ( a 1 + a 2 3 b 1 3 b 2 ) a 1 2 c 1 3 c 2 d 2 2 + e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( 3 a 1 + a 2 + b 1 + 3 b 2 ) x + 3 y ( a 1 + a 2 3 b 1 3 b 2 ) a 2 2 c 1 3 c 2 d 2 2 + e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( 3 a 1 + a 2 + b 1 + 3 b 2 ) x + 3 y ( a 1 + a 2 3 b 1 3 b 2 ) b 1 2 c 1 3 c 2 d 2 2 + e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( 3 a 1 + a 2 + b 1 + 3 b 2 ) x + 3 y ( a 1 + a 2 3 b 1 3 b 2 ) b 2 2 c 1 3 c 2 d 2 2 2 e ( 2 a 2 + 4 b 1 + 2 b 2 ) x + ( 2 a 2 4 b 1 2 b 2 ) y + 4 I ( a 2 + b 1 ) t ( a 2 b 1 ) b 1 2 c 2 2 d 1 3 d 2 2 e ( 2 a 2 + 4 b 1 + 2 b 2 ) x + ( 2 a 2 4 b 1 2 b 2 ) y + 4 I ( a 2 + b 1 ) t ( a 2 b 1 ) b 2 2 c 2 2 d 1 3 d 2 2 e ( 2 a 1 + 2 b 1 + 4 b 2 ) x + ( 2 a 1 2 b 1 4 b 2 ) y + 4 I t ( a 1 + b 2 ) ( a 1 b 2 ) b 1 2 c 1 2 d 1 d 2 3 2 e ( 2 a 1 + 2 b 1 + 4 b 2 ) x + ( 2 a 1 2 b 1 4 b 2 ) y + 4 I t ( a 1 + b 2 ) ( a 1 b 2 ) b 2 2 c 1 2 d 1 d 2 3 8 e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( a 1 + a 2 + 3 b 1 + 3 b 2 ) x + y ( a 1 + a 2 3 b 1 3 b 2 ) b 1 b 2 c 1 c 2 d 1 2 d 2 2 + 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I t ( a 1 + b 2 ) ( a 1 b 2 ) a 1 a 2 c 1 2 c 2 2 d 1 d 2 + 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I t ( a 1 + b 2 ) ( a 1 b 2 ) b 1 b 2 c 1 2 c 2 2 d 1 d 2 + 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I ( a 2 + b 1 ) t ( a 2 b 1 ) b 1 b 2 c 1 2 c 2 2 d 1 d 2 + 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I ( a 2 + b 1 ) t ( a 2 b 1 ) a 1 a 2 c 1 2 c 2 2 d 1 d 2 2 e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( a 1 + 3 a 2 + 3 b 1 + b 2 ) x + y ( a 1 + 3 a 2 3 b 1 b 2 ) b 1 b 2 c 1 c 2 3 d 1 2 2 e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( a 1 + 3 a 2 + 3 b 1 + b 2 ) x + y ( a 1 + 3 a 2 3 b 1 b 2 ) a 1 a 2 c 1 c 2 3 d 1 2 2 e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( 3 a 1 + a 2 + b 1 + 3 b 2 ) x + 3 y ( a 1 + a 2 3 b 1 3 b 2 ) b 1 b 2 c 1 3 c 2 d 2 2 2 e ( 2 I a 1 2 2 I b 2 2 2 I b 1 2 + 2 I a 2 2 ) t + ( 3 a 1 + a 2 + b 1 + 3 b 2 ) x + 3 y ( a 1 + a 2 3 b 1 3 b 2 ) a 1 a 2 c 1 3 c 2 d 2 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I ( a 2 + b 1 ) t ( a 2 b 1 ) a 1 2 c 1 2 c 2 2 d 1 d 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I ( a 2 + b 1 ) t ( a 2 b 1 ) a 2 2 c 1 2 c 2 2 d 1 d 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I ( a 2 + b 1 ) t ( a 2 b 1 ) b 1 2 c 1 2 c 2 2 d 1 d 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I ( a 2 + b 1 ) t ( a 2 b 1 ) b 2 2 c 1 2 c 2 2 d 1 d 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I t ( a 1 + b 2 ) ( a 1 b 2 ) a 1 2 c 1 2 c 2 2 d 1 d 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I t ( a 1 + b 2 ) ( a 1 b 2 ) a 2 2 c 1 2 c 2 2 d 1 d 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I t ( a 1 + b 2 ) ( a 1 b 2 ) b 1 2 c 1 2 c 2 2 d 1 d 2 e ( 2 a 1 + 2 b 2 + 2 b 1 + 2 a 2 ) x + ( 2 a 1 + 2 a 2 2 b 1 2 b 2 ) y + 4 I t ( a 1 + b 2 ) ( a 1 b 2 ) b 2 2 c 1 2 c 2 2 d 1 d 2 + 4 e ( 2 a 1 + 2 b 1 + 4 b 2 ) x + ( 2 a 1 2 b 1 4 b 2 ) y + 4 I t ( a 1 + b 2 ) ( a 1 b 2 ) b 1 b 2 c 1 2 d 1 d 2 3 + 4 e ( 2 a 2 + 4 b 1 + 2 b 2 ) x + ( 2 a 2 4 b 1 2 b 2 ) y + 4 I ( a 2 + b 1 ) t ( a 2 b 1 ) b 1 b 2 c 2 2 d 1 3 d 2 )
d S ( x , y t ) = ( d 1 e 2 I a 2 2 t + ( x + y ) a 2 2 b 1 ( I t b 1 x 2 + y 2 ) c 2 c 1 e 2 I a 1 2 t + ( x + y ) a 1 2 b 2 ( I t b 2 x 2 + y 2 ) d 2 ) 3 ( d 1 e 2 I a 2 2 t + ( x + y ) a 2 + 2 b 1 ( I t b 1 + x 2 y 2 ) c 2 c 1 e 2 I a 1 2 t + ( x + y ) a 1 + 2 b 2 ( I t b 2 + x 2 y 2 ) d 2 )
is a solution to the (mDSI) Equation (43).

4.3. Expression of the Solutions of Order 2

Already in this case, the explicit expressions of the solutions become too long to be written in the text. In the following, we present solutions with particular values of the parameters. In this case, we choose a 1 = 1 , b 1 = 1 , c 1 = 1 , d 1 = 1 , a 2 = 2 , b 2 = 2 , c 2 = 1 , d 2 = 1 , a 3 = 3 , b 3 = 3 , c 3 = 1 , d 3 = 0 , a 4 = 4 , b 4 = 4 , c 4 = 0 , d 4 = 1 .
Example 4.2.
The function v ( x , y , t ) defined by
v ( x , y , t ) = 12 e 24 I t + 10 x 4 y 4 e 20 I t + 10 x 2 y + 3 e 8 I t + 10 x
with
u ( x , y , t ) = 4 e 4 I t + 10 x + 2 y 4 e 20 I t + 10 x 2 y + 3 e 8 I t + 10 x
and
S ( x , y , t ) = n ( x , y , t ) d ( x , y , t )
n ( x , y , t ) = 96 ( e 3 x + 3 y + 18 I t ) 2 ( e 4 x 4 y 32 I t ) 2 ( 12 e 8 I t + 10 x e 20 I t + 10 x 2 y e x + y + 2 I t e 2 x 2 y 8 I t e x y 2 I t e 2 x + 2 y + 8 I t 9 e 8 I t + 10 x e 8 I t + 10 x e x + y + 2 I t e 2 x 2 y 8 I t e x y 2 I t e 2 x + 2 y + 8 I t + 48 e 24 I t + 10 x 4 y e 24 I t + 10 x 4 y ( e x + y + 2 I t ) 2 ( e 2 x 2 y 8 I t ) 2 72 e 24 I t + 10 x 4 y e 24 I t + 10 x 4 y e x + y + 2 I t e 2 x 2 y 8 I t e x y 2 I t e 2 x + 2 y + 8 I t + 27 e 24 I t + 10 x 4 y e 24 I t + 10 x 4 y ( e x y 2 I t ) 2 ( e 2 x + 2 y + 8 I t ) 2 16 e 20 I t + 10 x 2 y e 20 I t + 10 x 2 y e x + y + 2 I t e 2 x 2 y 8 I t e x y 2 I t e 2 x + 2 y + 8 I t + 12 e 20 I t + 10 x 2 y e 8 I t + 10 x e x + y + 2 I t e 2 x 2 y 8 I t e x y 2 I t e 2 x + 2 y + 8 I t )
d ( x , y , t ) = ( 4 e 20 I t + 10 x 2 y + 3 e 8 I t + 10 x ) ( 4 e 20 I t + 10 x 2 y 3 e 8 I t + 10 x ) ( e 3 x + 3 y + 18 I t ) 2 ( e 4 x 4 y 32 I t ) 2 ( 4 e x + y + 2 I t e 2 x 2 y 8 I t 3 e x y 2 I t e 2 x + 2 y + 8 I t ) 2
is a solution to the (mDSI) Equation (43).

4.4. Expression of the Solutions of Order 3

We present solutions with particular values of the parameters. In this case, we choose a 1 = 1 , b 1 = 1 , c 1 = 1 , d 1 = 1 , a 2 = 2 , b 2 = 2 , c 2 = 1 , d 2 = 1 , a 3 = 3 , b 3 = 3 , c 3 = 1 , d 3 = 1 , a 4 = 4 , b 4 = 4 , c 4 = 1 , d 4 = 0 , a 5 = 5 , b 5 = 1 , c 5 = 0 , d 5 = 1 , a 6 = 0 , b 6 = 0 , c 6 = 0 , d 6 = 1 .
Example 4.3.
The function v ( x , y , t ) defined by
v ( x , y , t ) = 72 e 6 I t + 11 x y 36 e 22 I t + 11 x + 3 y + 12 e 42 I t + 11 x + 5 y
with
u ( x , y , t ) = 24 e 58 I t + 11 x + 9 y 36 e 22 I t + 11 x + 3 y + 12 e 42 I t + 11 x + 5 y
and
S ( x , y , t ) = n ( x , y , t ) d ( x , y , t )
n ( x , y , t ) = 24 ( e 4 x + 4 y + 32 I t ) 2 ( e x + y + 2 I t ) 2 ( e x y 2 I t ) 2 ( 3 e 6 I t + 11 x y ( e 3 x + 3 y + 18 I t ) 2 ( e 2 x 2 y 8 I t ) 2 e 6 I t + 11 x y 18 e 6 I t + 11 x y e 3 x + 3 y + 18 I t e 2 x 2 y 8 I t e 3 x 3 y 18 I t e 2 x + 2 y + 8 I t e 6 I t + 11 x y 9 e 22 I t + 11 x + 3 y e 22 I t + 11 x + 3 y e 3 x + 3 y + 18 I t e 2 x 2 y 8 I t e 3 x 3 y 18 I t e 2 x + 2 y + 8 I t + 3 e 22 I t + 11 x + 3 y e 42 I t + 11 x + 5 y e 3 x + 3 y + 18 I t e 2 x 2 y 8 I t e 3 x 3 y 18 I t e 2 x + 2 y + 8 I t + 3 e 42 I t + 11 x + 5 y e 22 I t + 11 x + 3 y e 3 x + 3 y + 18 I t e 2 x 2 y 8 I t e 3 x 3 y 18 I t e 2 x + 2 y + 8 I t e 42 I t + 11 x + 5 y e 42 I t + 11 x + 5 y e 3 x + 3 y + 18 I t e 2 x 2 y 8 I t e 3 x 3 y 18 I t e 2 x + 2 y + 8 I t + 27 e 6 I t + 11 x y ( e 3 x 3 y 18 I t ) 2 ( e 2 x + 2 y + 8 I t ) 2 e 6 I t + 11 x y )
d ( x , y , t ) = ( 3 e 22 I t + 11 x + 3 y e 42 I t + 11 x + 5 y ) ( 3 e 22 I t + 11 x + 3 y e 42 I t + 11 x + 5 y ) ( e x + y + 2 I t ) 2 ( e x y 2 I t ) 2 ( e 4 x + 4 y + 32 I t ) 2 ( e 3 x + 3 y + 18 I t e 2 x 2 y 8 I t 3 e 3 x 3 y 18 I t e 2 x + 2 y + 8 I t ) 2
is a solution to the (mDSI) Equation (43).

5. Conclusions

General solutions to the (DS) equation have been given in terms of the determinants of order 2 N depending on 4 N real parameters. This work gives families of solutions to the (DS) equation expressed in the variables x, y, and t depending on 4 N real parameters.
Depending on the choices of the generating functions, it gives a large spectrum of solutions to the (DS) equation.
It will be relevant to explore more particular solutions beyond the particular case of this simplest choice of generating functions.
It would be important to carry out a classification of these solutions.
These solutions could find applications in fluid dynamics, in nonlinear optics, and in plasma physics, particularly, in network dynamics.

Funding

This research received no external funding.

Data Availability Statement

Data is contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Benney, D.J.; Roskes, G.J. Wave instabilities. Stud. Appl. Math. 1969, 48, 377–385. [Google Scholar] [CrossRef]
  2. Davey, A.; Stewartson, K. On Three-Dimensional Packets of Surface Waves. Proc. R. Soc. London. Math. Phys. Sci. 1974, 338, 101–110. [Google Scholar]
  3. Ablowitz, M.J.; Segur, H. On the evolution of packets of water waves. J. Fluid Mech. 1979, 92, 691–715. [Google Scholar] [CrossRef]
  4. Nishinari, K.; Abe, K.; Satsuma, J. A new type of soliton behaviour of the Davey-Stewartson equations in a plasma system. Theoret. Math. Phys. 1994, 99, 745–753. [Google Scholar] [CrossRef]
  5. Ablowitz, M.J.; Biondini, G.; Blair, S. Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic materials. Phys. Rev. E 2001, 63, 046605. [Google Scholar] [CrossRef] [PubMed]
  6. Huang, G.X.; Deng, L.; Hang, C. Davey-Stewartson description of two-dimensional nonlinear excitations in Bose-Einstein condensates. Phys. Rev. E 2005, 72, 036621. [Google Scholar] [CrossRef] [PubMed]
  7. Anker, D.; Freeman, N.C. On the soliton solutions of the Davey-Stewartson equation for long waves. Proc. R. Soc. London. Math. Phys. Sci. 1978, 360, 529–540. [Google Scholar]
  8. Nakamura, A. Exact explode-decay soliton solutions of a coupled nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 1983, 52, 3713–3721. [Google Scholar] [CrossRef]
  9. Boiti, M.; Leon, J.; Pempinelli, F. Waves in the Davey-Stewartson equation. Inv. Prob. 1991, 7, 175–185. [Google Scholar] [CrossRef]
  10. Hietarinta, J.; Hirota, R. Multidromion solutions to the Davey-Stewartson equation. Phys. Lett. A 1990, 145, 237–244. [Google Scholar] [CrossRef]
  11. Ohta, Y.; Jang, Y. Rogue waves in the Davey-Stewartson I equation. Phys. Rev. E 2012, 86, 036604. [Google Scholar] [CrossRef] [PubMed]
  12. Malanyuk, T.M. Finite gap solutions of the Davey-Stewartson I equations. J. Nonlinear Sci. 1994, 4, 1–21. [Google Scholar] [CrossRef]
  13. Rao, J.; He, J.; Chen, Y. The Davey Stewartson I Equation: Doubly localized two dimensional rogue lumps on the background of homoclinic orbits or constants. Lett. Math. Phys. 2022, 112, 75. [Google Scholar] [CrossRef]
  14. Coppini, F.; Grinevich, P.G.; Santini, P.M. The periodic breather anomalous wave solution of the Davey-Stewartson equations; first appearance, recurrence, and blow up properties. J. Phys. A 2024, 57, 015208. [Google Scholar] [CrossRef]
  15. Matveev, V.B. Darboux transformations in differential rings and functional-difference equations. In CRM Proceedings & Lecture Notes; American Mathematical Society: Providence, RI, USA, 1998; Volume 18, pp. 211–226. [Google Scholar]
  16. Salle, M.A. The Davey-Stewartson equations. Zap. Nau. Sem. Len. 1990, 180, 161–169. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Gaillard, P. Double Wronskian Representation of the Nth-Order Solutions to the Davey–Stewartson Equations. Axioms 2025, 14, 799. https://doi.org/10.3390/axioms14110799

AMA Style

Gaillard P. Double Wronskian Representation of the Nth-Order Solutions to the Davey–Stewartson Equations. Axioms. 2025; 14(11):799. https://doi.org/10.3390/axioms14110799

Chicago/Turabian Style

Gaillard, Pierre. 2025. "Double Wronskian Representation of the Nth-Order Solutions to the Davey–Stewartson Equations" Axioms 14, no. 11: 799. https://doi.org/10.3390/axioms14110799

APA Style

Gaillard, P. (2025). Double Wronskian Representation of the Nth-Order Solutions to the Davey–Stewartson Equations. Axioms, 14(11), 799. https://doi.org/10.3390/axioms14110799

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop