Double Wronskian Representation of the Nth-Order Solutions to the Davey–Stewartson Equations
Abstract
1. Introduction
2. Generalized Darboux Transformation
2.1. Auxiliary Linear System
2.2. Darboux Dressing
2.3. Iterated Darboux Transformation
3. Double Wronskian Representation of the Solutions to the (DS) Equation
4. Some Explicit Solutions to the DSI Equation
4.1. Choice of the Generating Functions
4.2. Expression of the Solutions of Order 1
4.3. Expression of the Solutions of Order 2
4.4. Expression of the Solutions of Order 3
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benney, D.J.; Roskes, G.J. Wave instabilities. Stud. Appl. Math. 1969, 48, 377–385. [Google Scholar] [CrossRef]
- Davey, A.; Stewartson, K. On Three-Dimensional Packets of Surface Waves. Proc. R. Soc. London. Math. Phys. Sci. 1974, 338, 101–110. [Google Scholar]
- Ablowitz, M.J.; Segur, H. On the evolution of packets of water waves. J. Fluid Mech. 1979, 92, 691–715. [Google Scholar] [CrossRef]
- Nishinari, K.; Abe, K.; Satsuma, J. A new type of soliton behaviour of the Davey-Stewartson equations in a plasma system. Theoret. Math. Phys. 1994, 99, 745–753. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Biondini, G.; Blair, S. Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic materials. Phys. Rev. E 2001, 63, 046605. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.X.; Deng, L.; Hang, C. Davey-Stewartson description of two-dimensional nonlinear excitations in Bose-Einstein condensates. Phys. Rev. E 2005, 72, 036621. [Google Scholar] [CrossRef] [PubMed]
- Anker, D.; Freeman, N.C. On the soliton solutions of the Davey-Stewartson equation for long waves. Proc. R. Soc. London. Math. Phys. Sci. 1978, 360, 529–540. [Google Scholar]
- Nakamura, A. Exact explode-decay soliton solutions of a coupled nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 1983, 52, 3713–3721. [Google Scholar] [CrossRef]
- Boiti, M.; Leon, J.; Pempinelli, F. Waves in the Davey-Stewartson equation. Inv. Prob. 1991, 7, 175–185. [Google Scholar] [CrossRef]
- Hietarinta, J.; Hirota, R. Multidromion solutions to the Davey-Stewartson equation. Phys. Lett. A 1990, 145, 237–244. [Google Scholar] [CrossRef]
- Ohta, Y.; Jang, Y. Rogue waves in the Davey-Stewartson I equation. Phys. Rev. E 2012, 86, 036604. [Google Scholar] [CrossRef] [PubMed]
- Malanyuk, T.M. Finite gap solutions of the Davey-Stewartson I equations. J. Nonlinear Sci. 1994, 4, 1–21. [Google Scholar] [CrossRef]
- Rao, J.; He, J.; Chen, Y. The Davey Stewartson I Equation: Doubly localized two dimensional rogue lumps on the background of homoclinic orbits or constants. Lett. Math. Phys. 2022, 112, 75. [Google Scholar] [CrossRef]
- Coppini, F.; Grinevich, P.G.; Santini, P.M. The periodic breather anomalous wave solution of the Davey-Stewartson equations; first appearance, recurrence, and blow up properties. J. Phys. A 2024, 57, 015208. [Google Scholar] [CrossRef]
- Matveev, V.B. Darboux transformations in differential rings and functional-difference equations. In CRM Proceedings & Lecture Notes; American Mathematical Society: Providence, RI, USA, 1998; Volume 18, pp. 211–226. [Google Scholar]
- Salle, M.A. The Davey-Stewartson equations. Zap. Nau. Sem. Len. 1990, 180, 161–169. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaillard, P. Double Wronskian Representation of the Nth-Order Solutions to the Davey–Stewartson Equations. Axioms 2025, 14, 799. https://doi.org/10.3390/axioms14110799
Gaillard P. Double Wronskian Representation of the Nth-Order Solutions to the Davey–Stewartson Equations. Axioms. 2025; 14(11):799. https://doi.org/10.3390/axioms14110799
Chicago/Turabian StyleGaillard, Pierre. 2025. "Double Wronskian Representation of the Nth-Order Solutions to the Davey–Stewartson Equations" Axioms 14, no. 11: 799. https://doi.org/10.3390/axioms14110799
APA StyleGaillard, P. (2025). Double Wronskian Representation of the Nth-Order Solutions to the Davey–Stewartson Equations. Axioms, 14(11), 799. https://doi.org/10.3390/axioms14110799
