Scator Holomorphic Functions
Abstract
1. Introduction
2. Implicitly Omitted Assumptions
3. Derivation of Solutions to the Generalized Cauchy–Riemann System
3.1. The Case
3.1.1. Solving the Compatibility Conditions (8)
3.1.2. Solving the Full System (6)
3.2. The Case
4. Final Results and Classification of Solutions
- Components exponential functions:where , , and () are real constants.
- Affine functions of the special form:where and are real constants and are entries of the constant matrix J given by (41), which is expressed by constants ().
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Guasti, M.; Zaldívar, F. An elliptic non distributive algebra. Adv. Appl. Clifford Algebras 2013, 23, 825–835. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. A Non-distributive Extension of Complex Numbers to Higher Dimensions. Adv. Appl. Clifford Algebras 2015, 25, 829–849. [Google Scholar] [CrossRef]
- Kobus, A.; Cieśliński, J.L. On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions. Adv. Appl. Clifford Algebras 2017, 27, 1369–1386. [Google Scholar] [CrossRef]
- Cieśliński, J.L.; Kobus, A. On the Product Rule for the Hyperbolic Scator Algebra. Axioms 2020, 9, 55. [Google Scholar] [CrossRef]
- Singh, P.; Gupta, A.; Joshi, S.D. On the hypercomplex numbers and normed division algebras in all dimensions: A unified multiplication. PLoS ONE 2024, 19, e0312502. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Guasti, M. Composition of velocities and momentum transformations in a scator-deformed Lorentz metric. Eur. Phys. J. Plus 2020, 135, 542. [Google Scholar] [CrossRef]
- Cieśliński, J.L.; Kobus, A. Group structure and geometric interpretation of the embedded scator space. Symmetry 2020, 13, 1504. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. Differential quotients in elliptic scator algebra. Math. Meth. Appl. Sci. 2018, 41, 4827–4840. [Google Scholar] [CrossRef]
- Valkova-Jarvis, Z.; Nenova, M.; Mihaylova, D. Hypercomplex Numbers–A Tool for Enhanced Efficiency and Intelligence in Digital Signal Processing. Mathematics 2025, 13, 504. [Google Scholar] [CrossRef]
- Sudbery, A. Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 1979, 85, 199–225. [Google Scholar] [CrossRef]
- Leo, S.D.; Rotelli, P.P. Quaternionic Analyticity. Appl. Math. Lett. 2003, 16, 1077–1081. [Google Scholar] [CrossRef]
- Ryan, J. Clifford Analysis. In Lectures on Clifford (Geometric) Algebras and Applications; Abłamowicz, R., Sobczyk, G., Eds.; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2004; pp. 53–89. [Google Scholar]
- Kim, J.E. Multidual Complex Numbers and the Hyperholomorphicity of Multidual Complex-Valued Functions. Axioms 2025, 14, 683. [Google Scholar] [CrossRef]
- Kobus, A.; Cieśliński, J.L. Geometric and differential features of scators as induced by fundamental embedding. Symmetry 2020, 12, 1880. [Google Scholar] [CrossRef]
- Cieśliński, J.L.; Zhalukevich, D. Explicit Formulas for All Scator Holomorphic Functions in the (1+2)-Dimensional Case. Symmetry 2020, 12, 1550. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. Components exponential scator holomorphic function. Math. Meth. Appl. Sci. 2020, 43, 1017–1034. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. The Components Exponential Function in Scator Hypercomplex Space: Planetary Elliptical Motion and Three-Body Choreographies. In Advances in Number Theory and Applied Analysis; Debnath, P., Srivastava, H.M., Chakraborty, K., Kumam, P., Eds.; World Scientific: Singapore, 2023; Chapter 9; pp. 195–230. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieśliński, J.L.; Hasiewicz, Z.; Kobus, A. Scator Holomorphic Functions. Axioms 2025, 14, 798. https://doi.org/10.3390/axioms14110798
Cieśliński JL, Hasiewicz Z, Kobus A. Scator Holomorphic Functions. Axioms. 2025; 14(11):798. https://doi.org/10.3390/axioms14110798
Chicago/Turabian StyleCieśliński, Jan L., Zbigniew Hasiewicz, and Artur Kobus. 2025. "Scator Holomorphic Functions" Axioms 14, no. 11: 798. https://doi.org/10.3390/axioms14110798
APA StyleCieśliński, J. L., Hasiewicz, Z., & Kobus, A. (2025). Scator Holomorphic Functions. Axioms, 14(11), 798. https://doi.org/10.3390/axioms14110798
 
        



