Optimal Hölder Regularity for Discontinuous Sub-Elliptic Systems Structured on Hörmander’s Vector Fields
Abstract
1. Introduction and Main Results
- , .
- for all , .
- , .
- with .
2. Preliminaries
3. 𝒜-Harmonic Approximation Reformulation
4. Partial Hölder Regularity for Controllable Growth
4.1. Caccioppoli-Type Inequality for Controllable Growth
4.2. Proof of Theorem 1
5. Partial Hölder Continuity for Natural Growth
5.1. Caccioppolli-Type Inequality for Natural Growth
5.2. Proof of Theorem 2
5.3. Proof of Theorem 3
6. Conclusions
- Extending regularity theory from continuous to VMO coefficients in the -variable;
- Obtaining exact Hölder exponents: (controlled growth) versus (natural growth);
- Relaxing the smallness condition under slightly stronger inhomogeneity constraints.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hörmander, L. Hypoelliptic second order differential equation. Acta Math. Upps. 1967, 119, 147–171. [Google Scholar] [CrossRef]
- De Giorgi, E. Un esempio di estremali discontinue per un problem variazionale di upo ellitico. Boll. Unione Mat. Ital. 1968, 4, 135–137. [Google Scholar]
- Chen, Y.; Wu, L. Second Order Elliptic Equations and Elliptic Systems; Science Press: Beijing, China, 2003. [Google Scholar]
- Giaquinta, M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems; Princeton University Press: Princeton, NJ, USA, 1983. [Google Scholar]
- Duzaar, F.; Steffen, K. Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. Reine Angew. Math. 2002, 546, 73–138. [Google Scholar] [CrossRef]
- Duzaar, F.; Grotowski, J.F. Partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation. Manuscripta Math. 2000, 103, 267–298. [Google Scholar] [CrossRef]
- Duzaar, F.; Mingione, G. Regularity for degenerate elliptic problems via p-harmonic approximation. Ann. Inst. H. Poincaré Anal. Non Linèaire 2004, 21, 735–766. [Google Scholar] [CrossRef]
- Bäuerlein, F. Partial gradient regularity for parabolic systems with degenerate diffusion and Hölder continuous coefficients. Nonlinear Anal. TMA 2025, 251, 113691. [Google Scholar] [CrossRef]
- Bögelein, V.; Duzaar, F.; Habermann, J.; Scheven, C. Partial Hölder continuity for discontinuous elliptic problems with VMO-coefficients. Proc. Lond. Math. Soc. 2011, 103, 371–404. [Google Scholar] [CrossRef]
- Duzaar, F.; Gastel, A.; Mingione, G. Elliptic systems, singular sets and Dini continuity. Commun. Part. Diff. Equ. 2004, 29, 1215–1240. [Google Scholar] [CrossRef]
- Dan<i>e</i>ˇ<i>c</i>ˇek, J.; John, O.; Stará, J. Morrey space regularity for weak solutions of Stokes systems with VMO coefficients. Ann. Mat. Pura Appl. 2011, 190, 681–701. [Google Scholar]
- Foss, M.; Mingione, G. Partial continuity for elliptic problems. Ann. Inst. H. Poincaré Anal. Non Linéire 2008, 25, 471–503. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, Y.; Chen, S. Partial regularity in the interior for discontinuous inhomogeneous elliptic system with VMO-coefficients. Ann. Mat. Pura Appl. 2017, 196, 85–105. [Google Scholar]
- Foss, M.; Isernia, T.; Leone, C.; Verde, A. A-caloric approximation and partial regularity for parabolic systems with Orlicz growth. Calc. Var. Partial Differ. Equ. 2023, 62, 51. [Google Scholar] [CrossRef]
- Isernia, T.; Leone, C.; Verde, A. Partial regularity result for non-autonomous elliptic systems with general growth. Commun. Pure Appl. Anal. 2021, 20, 4271–4305. [Google Scholar] [CrossRef]
- Ok, J.; Scilla, G.; Stroffolini, B. Partial regularity for degenerate parabolic systems with general growth via caloric approximations. Calc. Var. Partial Diff. Equ. 2024, 63, 1–49. [Google Scholar] [CrossRef]
- Isernia, T.; Leone, C.; Verde, A. Partial regularity for elliptic systems with critical growth. Rend. Lincei Mat. Appl. 2022, 33, 271–296. [Google Scholar] [CrossRef]
- Capogna, L.; Garofalo, N. Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type. J. Eur. Math. Soc. 2003, 5, 1–40. [Google Scholar] [CrossRef]
- Föglein, A. Partial regularity results for sub-elliptic systems in the Heisenberg group. Calc. Var. Partial Differ. Equ. 2008, 32, 25–51. [Google Scholar] [CrossRef]
- Shores, E. Regularity Theory for Weak Solutions of Systems in Carnot Groups. Ph.D. Thesis, University of Arkansas, Fayetteville, AR, USA, 2005. [Google Scholar]
- Wang, J.; Zhu, M.; Gao, S.; Liao, D. Regularity for sub-elliptic systems with VMO-coefficients in the Heisenberg group: The sub-quadratic structure case. Adv. Nonlinear Anal. 2021, 10, 420–449. [Google Scholar] [CrossRef]
- Xu, C.; Zuily, C. Higher interior regularity for quasilinear sub-elliptic systems. Calc. Var. Partial. Differ. Equ. 1997, 5, 323–343. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J. Partial regularity for a nonlinear discontinuous sub-elliptic system with drift on the Heisenberg group: The superquadratic case. Complex Var. Elliptic Equ. 2024, 69, 547–572. [Google Scholar] [CrossRef]
- Domokos, A. On the Regularity of p-Harmonic Functions in the Heisenberg Group. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2004. [Google Scholar]
- Mukherjee, S.; Zhong, X. C1,α regularity for variational problems in the Heisenberg group. Anal. PDE 2021, 14, 567–594. [Google Scholar] [CrossRef]
- Mingione, G.; Zatorska-Goldstein, A.; Zhong, X. Gradient regularity for elliptic equations in the Heisenberg group. Adv. Math. 2009, 222, 62–129. [Google Scholar] [CrossRef]
- Citti, G.; Mukherjee, S. Regularity of quasi-linear equations with Hörmander vector fields of Step two. Adv. Math. 2022, 408, 108593. [Google Scholar] [CrossRef]
- Dong, Y.; Niu, P. Estimates in Morrey spaces and Hölder continuity for weak solutions to degenerate elliptic systems. Manuscr. Math. 2012, 138, 419–437. [Google Scholar] [CrossRef]
- Di Fazio, G.; Fanciullo, M. Gradient estimates for elliptic systems in Carnot-Carathéodory spaces. Comment. Math. Univ. Carol. 2002, 43, 605–618. [Google Scholar]
- Gao, D.; Niu, P.; Wang, J. Partial regularity for degenerate sub-elliptic systems associated with Hörmander’s vector fields. Nonlinear Anal. 2010, 73, 3209–3223. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Liao, D. Gradient regularity for nonlinear sub-elliptic systems with the drift term: Sub-quadratic growth case. AIMS Math. 2025, 10, 1407–1437. [Google Scholar] [CrossRef]
- Wang, J.; Liao, D. Optimal partial regularity for nonlinear sub-elliptic systems related to Hörmander’s vector fields. Kyushu J. Math. 2011, 65, 251–277. [Google Scholar] [CrossRef]
- Nagel, A.; Stein, E.M.; Wainger, S. Balls and metrics defined by vector fields I. Basic properties. Acta Math. 1985, 155, 130–147. [Google Scholar] [CrossRef]
- Lu, G. The sharp Poincaré inequality for free vector fields: An endpoint result. Rev. Mat. Iberoam. 1994, 10, 453–466. [Google Scholar] [CrossRef]
- Evans, L.; Gariepy, R. Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics; CRC Press: New York, NY, USA, 1992. [Google Scholar]
| Aspect | Controlled Growth (Theorem 1) | Natural Growth (Theorems 2 and 3) |
|---|---|---|
| Hypothesis on and | H1–H2 and HC | H1–H2 and HN |
| Assumptions for u | ||
| Regularity results | •, | •, |
| •, , | •, | |
| Exact Hölder exponent | ||
| Mathematical insight | This comparison highlights a fundamental trade-off in the theory: the weaker structural hypotheses of HN necessitate stronger a priori assumptions (boundedness of u) and, crucially, lead to weaker regularity outcomes (lower Hölder exponents) compared to HC. This directly illustrates how the regularity of solutions is intrinsically governed by the strength of the underlying structural conditions. | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, D.; Wang, J. Optimal Hölder Regularity for Discontinuous Sub-Elliptic Systems Structured on Hörmander’s Vector Fields. Axioms 2025, 14, 761. https://doi.org/10.3390/axioms14100761
Liao D, Wang J. Optimal Hölder Regularity for Discontinuous Sub-Elliptic Systems Structured on Hörmander’s Vector Fields. Axioms. 2025; 14(10):761. https://doi.org/10.3390/axioms14100761
Chicago/Turabian StyleLiao, Dongni, and Jialin Wang. 2025. "Optimal Hölder Regularity for Discontinuous Sub-Elliptic Systems Structured on Hörmander’s Vector Fields" Axioms 14, no. 10: 761. https://doi.org/10.3390/axioms14100761
APA StyleLiao, D., & Wang, J. (2025). Optimal Hölder Regularity for Discontinuous Sub-Elliptic Systems Structured on Hörmander’s Vector Fields. Axioms, 14(10), 761. https://doi.org/10.3390/axioms14100761

