Global Solutions to the Vlasov–Fokker–Planck Equation with Local Alignment Forces Under Specular Reflection Boundary Condition
Abstract
1. Introduction
1.1. Equations
1.2. Boundary Condition
1.3. Macroscopic Equations
1.4. Function Space
1.5. Notation
- The relation denotes an inequality for a universal constant . The notation is defined analogously, and we write if both and are satisfied;
- The inner product of two complex functions f and g is defined as ;
- The complex inner product over the velocity variable is denoted by , defined as
- The complex inner product over the spatial variable is denoted by , defined as
- The combined inner product is
- We write with for a standard multi-index. Only and are needed for this paper.
- The symbol denotes the real part of a complex number.
- We define the norm for a function as
- The associated energy functional and dissipation functional are given by
1.6. Related Works
2. Main Result
3. Preliminaries
4. The Proofs of Theorem 1
4.1. The Microscopic Estimate
4.2. The Macroscopic Estimate
4.3. The Uniform-in-Time Estimate
4.4. Proof of Theorem 1
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Y. The Boltzmann equation in the whole space. Indiana Univ. Math. J. 2004, 53, 1081–1094. [Google Scholar] [CrossRef]
- Duan, R.-J.; Liu, S.-Q.; Sakamoto, S.; Strain, R.M. Global Mild Solutions of the Landau and Non-Cutoff Boltzmann Equations. Comm. Pure Appl. Math. 2021, 74, 932–1020. [Google Scholar] [CrossRef]
- Choi, Y.-P. Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces. Nonlinearity 2016, 29, 1887–1916. [Google Scholar] [CrossRef]
- Karper, T.-K.; Mellet, A.; Trivisa, K. Existence of weak solutions to kinetic flocking models. SIAM J. Math. Anal. 2013, 45, 215–243. [Google Scholar] [CrossRef]
- Karper, T.-K.; Mellet, A.; Trivisa, K. Hydrodynamic limit of the kinetic Cucker-Smale flocking model. Math. Models Methods Appl. Sci. 2015, 25, 131–163. [Google Scholar] [CrossRef]
- Choi, Y.-P. Compressible Euler equations interacting with incompressible flow. Kinet. Relat. Models 2015, 8, 335–358. [Google Scholar] [CrossRef]
- Guo, Y. The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 2002, 55, 1104–1135. [Google Scholar] [CrossRef]
- Guo, Y. The Vlasov-Poisson-Laudau system in a periodic box. J. Am. Math. Soc. 2012, 25, 759–812. [Google Scholar] [CrossRef]
- Duan, R.-J.; Liu, S.-Q. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinet. Relat. Models 2013, 6, 687–700. [Google Scholar] [CrossRef]
- Duan, R.-J.; Liu, S.-Q. Time-periodic solutions of the Vlasov-Poisson-Fokker-Planck system. Acta Math. Sci. 2015, 35, 876–886. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Jang, J. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete Contin. Dyn. Syst. Ser. B 2013, 18, 681–691. [Google Scholar] [CrossRef]
- Bouchut, F. Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system. J. Differ. Equ. 1995, 122, 225–238. [Google Scholar] [CrossRef]
- Carrillo, J.-A.; Choi, Y.-P.; Karper, T. On the analysis of a coupled kinetic-fluid model with local alignment forces. Ann. Inst. Henri Poincare 2016, 33, 273–307. [Google Scholar] [CrossRef]
- Carrillo, J.-A.; Choi, Y.-P.; Tadmor, E.; Tan, C.-H. Critical thresholds in 1D Euler equations with non-local forces. Math. Model. Methods Appl. Sci. 2016, 26, 185–206. [Google Scholar] [CrossRef]
- Carrillo, J.-A.; Duan, R.-J.; Moussa, A. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinet. Relat. Models 2011, 4, 227–258. [Google Scholar] [CrossRef]
- Carrillo, J.-A.; Fornasier, M.; Rosado, J.; Toscani, G. Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 2010, 42, 218–236. [Google Scholar] [CrossRef]
- Degond, P.; Lemou, M. Dispersion relations for the linearized Fokker-Planck equation. Arch. Ration. Mech. Anal. 1997, 138, 137–167. [Google Scholar] [CrossRef]
- Esposito, R.; Guo, Y.; Marra, R. Stability of the front under a Vlasov-Fokker-Planck dynamics. Arch. Ration. Mech. Anal. 2010, 195, 75–116. [Google Scholar] [CrossRef]
- Villani, C. A review of mathematical topics in collisional kinetic theory. In Handbook of Mathematical Fluid Dynamics; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Frank, T.-D. Nonlinear Fokker-Planck Equations: Fundamentals and Applications; Springer: Berlin, Germany, 2005. [Google Scholar]
- Yang, T.; Zhao, H.-J. A Half-space Problem for the Boltzmann Equation with Specular Reflection Boundary Condition. Commun. Math. Phys. 2005, 255, 683–726. [Google Scholar] [CrossRef]
- Duan, R.-J.; Ko, G.-H.; Lee, D.-Y. The Boltzmann equation with a class of large-amplitude initial data and specular reflection boundary condition. J. Stat. Phys. 2023, 190, 189. [Google Scholar] [CrossRef]
- Guo, Y.; Hwang, H.-J.; Jang, J.-W.; Ouyang, Z.-M. The Landau Equation with the Specular Reflection Boundary Condition. Arch. Ration. Mech. Anal. 2020, 236, 1389–1454. [Google Scholar] [CrossRef]
- Dong, H.-J.; Guo, Y.; Ouyang, Z.-M. The Vlasov-Poisson-Landau System with the Specular-Reflection Boundary Condition. Arch. Ration. Mech. Anal. 2022, 246, 333–396. [Google Scholar] [CrossRef]
- Tan, L.-H.; Fan, Y.-Z. Global solutions and exponential time decay rates to the Navier-Stokes-Vlasov-Fokker-Planck system in low regularity space. J. Math. Phys. 2023, 64, 031504. [Google Scholar] [CrossRef]
- Lei, Y.-J.; Zhang, J.; Zhang, X.-Y. The Fokker-Planck-Boltzmann equation in the finite channel. J. Math. Phys. 2024, 65, 021503. [Google Scholar] [CrossRef]
- Deng, D.-Q.; Duan, R.-J. Low Regularity Solutions for the Vlasov-Poisson-Landau/Boltzmann System. Nonlinearity 2023, 36, 2193. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Fan, Y. Global Solutions to the Vlasov–Fokker–Planck Equation with Local Alignment Forces Under Specular Reflection Boundary Condition. Axioms 2025, 14, 760. https://doi.org/10.3390/axioms14100760
Chang Y, Fan Y. Global Solutions to the Vlasov–Fokker–Planck Equation with Local Alignment Forces Under Specular Reflection Boundary Condition. Axioms. 2025; 14(10):760. https://doi.org/10.3390/axioms14100760
Chicago/Turabian StyleChang, Yanming, and Yingzhe Fan. 2025. "Global Solutions to the Vlasov–Fokker–Planck Equation with Local Alignment Forces Under Specular Reflection Boundary Condition" Axioms 14, no. 10: 760. https://doi.org/10.3390/axioms14100760
APA StyleChang, Y., & Fan, Y. (2025). Global Solutions to the Vlasov–Fokker–Planck Equation with Local Alignment Forces Under Specular Reflection Boundary Condition. Axioms, 14(10), 760. https://doi.org/10.3390/axioms14100760