Z-Solitons and Gradient Z-Solitons on α-Cosymplectic Manifolds
Abstract
1. Introduction
2. Preliminaries
- It is almost cosymplectic [31] if and .
- It is normal if its Nijenhuis tensor, defined as
- It is called almost α-Kenmotsu if and with constant.
3. -Soliton and Gradient -Soliton on -Cosymplectic Manifolds
- (i)
- The Z-soliton is expanding if ;
- (ii)
- The Z-soliton is shrinking if ;
- (iii)
- The Z-soliton is steady if .
3.1. -Cosymplectic Manifolds Admitting
3.2. -Cosymplectic Manifolds Satisfying
3.3. -Cosymplectic Manifolds Satisfying
3.4. -Cosymplectic Manifolds Satisfying
3.5. Z-Recurrent -Cosymplectic Manifolds
3.6. Example
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hamilton, R.S. Three-manifolds with positive Ricci curvature. J. Differ. Geom. 1982, 17, 255–306. [Google Scholar] [CrossRef]
- Hamilton, R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237–262. [Google Scholar]
- Chave, T.; Valent, G. A class of compact and non-compact quasi-Einstein metrics and the renormalizability properties. Nucl. Phys. B 1996, 478, 758–778. [Google Scholar] [CrossRef]
- Chave, T.; Valent, G. Quasi-Einstein metrics and the renormalizability properties. Helv. Phys. Acta 1996, 69, 344–347. [Google Scholar]
- Cao, H.; Zhou, D. On Complete Gradient Shrinking Ricci Solitons. J. Differ. Geom. 2010, 85, 175–186. [Google Scholar] [CrossRef]
- Ghosh, A. Ricci Almost Solitons and Contact Geometry. Adv. Geom. 2021, 21, 571–590. [Google Scholar] [CrossRef]
- Tripathi, M.M. Ricci solitons in contact metric manifolds. arXiv 2008, arXiv:0801.4222v1. [Google Scholar] [CrossRef]
- Calin, C.; Crasmareanu, M. From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds. Bull. Malays. Math. Sci. Soc. 2010, 33, 361–368. [Google Scholar]
- Turan, M.; De, U.C.; Yildiz, A. Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds. Filomat 2012, 26, 363–370. [Google Scholar] [CrossRef]
- De, U.C.; Mondal, A.K. 3-dimensional quasi-Sasakian manifolds and Ricci solitons. SUT J. Math. 2011, 48, 71–81. [Google Scholar] [CrossRef]
- De, U.C.; Deshmukh, S.; Mandal, K. On three-dimensional N(k)-para contact metric manifolds and Ricci solitons. Bull. Iran. Math. Soc. 2017, 43, 1571–1583. [Google Scholar]
- Ayar, G.; Yildirim, M. Ricci Solitons and Gradient Ricci Solitons on Nearly Kenmotsu Manifolds. Facta Univ. Ser. Math. Inform. 2019, 34, 503–510. [Google Scholar] [CrossRef]
- Yildirim, M.; Ayar, G. Ricci Solitons and Gradient Ricci Solitons on Nearly Cosymplectic Manifolds. J. Univers. Math. 2021, 4, 201–208. [Google Scholar]
- Yoldas, H.A.; Meric, S.E.; Yasar, E. Some Characterizations of α-Cosymplectic Manifolds Admitting Yamabe Solitons. Palestine J. Math. 2021, 10, 234–241. [Google Scholar]
- Yoldas, H.A. Some Results on α-Cosymplectic Manifolds. Bull. Transilv. Univ. Brasov Ser. III Math. Comput. Sci. 2021, 1, 115–128. [Google Scholar]
- Sharma, R. Almost Ricci solitons and K-contact geometry. Monatsh. Math. 2014, 175, 621–628. [Google Scholar] [CrossRef]
- Ghosh, A. Ricci soliton and Ricci almost soliton within the framework of Kenmotsu manifold. Carpathian Math. Publ. 2019, 11, 59–69. [Google Scholar] [CrossRef]
- Mantica, C.A.; Molonari, L.G. Weakly Z-symmetric manifolds. Acta Math. Hung. 2012, 135, 80–96. [Google Scholar] [CrossRef]
- Mantica, C.A.; Suh, Y.J. Pseudo Z-symmetric Riemannian manifolds with harmonic curvature tensors. Int. J. Geom. Methods Mod. Phys. 2012, 9, 1250004. [Google Scholar] [CrossRef]
- De, U.C.; Guha, N.; Kamilya, D. On generalized Ricci-recurrent manifolds. Tensor 1995, 56, 312–317. [Google Scholar]
- Mallick, S.; De, U.C. Z-tensor on N(k)-Quasi-Einstein Manifolds. Kyungpook Math. J. 2016, 56, 979–991. [Google Scholar] [CrossRef]
- De, U.C.; Mantica, C.A.; Suh, Y.J. On weakly cyclic Z-symmetric manifolds. Acta Math. Hung. 2015, 146, 153–167. [Google Scholar] [CrossRef]
- Yavuz Tascia, A.; Zengin, F.Ö. On Z-symmetric manifold admitting projective curvature tensor. Int. Electron. J. Geom. 2022, 15, 39–46. [Google Scholar] [CrossRef]
- Singh, A.; Chaubey, S.K.; Yadav, S.K.; Patel, S. Z-tensor on N(k)-contact metric manifolds admitting Ricci soliton type structure. Univers. J. Math. Appl. 2024, 7, 83–92. [Google Scholar] [CrossRef]
- Barman, A.; Unal, I. Geometry of Kenmotsu manifolds admitting Z-tensor. Bull. Transilv. Univ. Brasov Ser. III Math. Comput. Sci. 2022, 23, 23–40. [Google Scholar] [CrossRef]
- Azami, S.; De, U.C. Generalized Z-Solitons on Magneto-Fluid Spacetimes in f(r)-Gravity. Int. J. Theor. Phys. 2025, 64, 33. [Google Scholar] [CrossRef]
- Mantica, C.A.; Suh, Y.J. Pseudo-Q-symmetric Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 2013, 10, 25. [Google Scholar] [CrossRef]
- Yadav, S.; Yildiz, A. Q-Curvature Tensor on f-Kenmotsu 3-Manifolds. Univ. J. Math. Appl. 2022, 5, 96–106. [Google Scholar] [CrossRef]
- Yildirim, M. A new characterization of Kenmotsu manifolds with respect to the Q tensor. J. Geom. Phys. 2022, 176, 104498. [Google Scholar] [CrossRef]
- Yildirim, M.; Beyendi, S.; Ayar, G.; Aktan, N. Geometry of Kenmotsu Manifolds via Q-Curvature Tensor and Schouten–Van Kampen Connection. Axioms 2025, 14, 498. [Google Scholar] [CrossRef]
- Goldberg, S.I.; Yano, K. Differential Geometry of Cosymplectic Manifolds. J. Differ. Geom. 1969, 1, 347–354. [Google Scholar]
- Olszak, Z. On almost cosymplectic manifolds. Kodai Math. 1981, 4, 239–250. [Google Scholar] [CrossRef]
- Cappelletti-Montano, B.; de Nicola, A.; Yudin, I. A Survey on Cosymplectic Geometry. Rev. Math. Phys. 2013, 25, 1343002. [Google Scholar] [CrossRef]
- Kim, T.W.; Pak, H.K. Canonical foliations of certain classes of almost contact metric structures. Acta Math. Sin. 2005, 21, 841–846. [Google Scholar] [CrossRef]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed.; Birkhäuser: Boston, MA, USA, 2010. [Google Scholar]
- Erken, I.K.; Murathan, C. Classification Results on Almost α-Cosymplectic Manifolds. Ann. Polon. Math. 2017, 118, 51–66. [Google Scholar]
- Yildirim, M.; Beyendi, S. On Almost Generalized Weakly Symmetric α-Cosymplectic Manifolds. Ujma 2020, 3, 156–159. [Google Scholar] [CrossRef]
- Yildirim, M.; Beyendi, S. On Generalized Weakly Symmetric α-Cosymplectic Manifolds. Hacet. J. Math. Stat. 2021, 50, 1745–1755. [Google Scholar] [CrossRef]
- Beyendi, S.; Ayar, G.; Aktan, N. On a type of α-cosymplectic manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019, 68, 852–861. [Google Scholar] [CrossRef]
- Aktan, N.; Yildirim, M.; Murathan, C. Almost f-cosymplectic manifolds. Mediterr. J. Math. 2014, 11, 775–787. [Google Scholar] [CrossRef]
- Ozturk, H.; Murathan, C.; Aktan, N.; Vanli, A.T. Almost α-cosymplectic f-manifolds. Ann. Alexandru Ioan Cuza Univ. Math. 2014, 60, 211–226. [Google Scholar] [CrossRef]
- Blair, D.E. Contact Manifolds in Riemannian Geometry; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1976; Volume 509. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yildirim, M.; Akif Akyol, M.; Choudhary, M.A.; Aloui, F. Z-Solitons and Gradient Z-Solitons on α-Cosymplectic Manifolds. Axioms 2025, 14, 759. https://doi.org/10.3390/axioms14100759
Yildirim M, Akif Akyol M, Choudhary MA, Aloui F. Z-Solitons and Gradient Z-Solitons on α-Cosymplectic Manifolds. Axioms. 2025; 14(10):759. https://doi.org/10.3390/axioms14100759
Chicago/Turabian StyleYildirim, Mustafa, Mehmet Akif Akyol, Majid Ali Choudhary, and Foued Aloui. 2025. "Z-Solitons and Gradient Z-Solitons on α-Cosymplectic Manifolds" Axioms 14, no. 10: 759. https://doi.org/10.3390/axioms14100759
APA StyleYildirim, M., Akif Akyol, M., Choudhary, M. A., & Aloui, F. (2025). Z-Solitons and Gradient Z-Solitons on α-Cosymplectic Manifolds. Axioms, 14(10), 759. https://doi.org/10.3390/axioms14100759