Bi-Univalent Function Classes Defined by Imaginary Error Function and Bernoulli Polynomials
Abstract
1. Preliminaries
2. Principal Findings
3. Specific Instances
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sahu, P.K.; Mallick, B. Approximate solution of fractional order Lane-Emden type differential equation by orthonormal Bernoulli polynomials. Int. J. Appl. Comput. Math. 2021, 5, 1–9. [Google Scholar]
- Loh, J.R.; Phang, C. Numerical solution of Fredholm fractional integro-differential equation with right sided Caputo’s derivative using Bernoulli polynomials operational matrix of fractional derivative. Mediterr J. Math. 2019, 16, 1–25. [Google Scholar] [CrossRef]
- Natalini, P.; Bernardim, A. A generalization of the Bernoulli polynomials. Am. J. Appl. Math. 2003, 2003, 155–163. [Google Scholar] [CrossRef]
- Bieberbach, L. Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Eiheintskreises vermiteln. Sitzungsberichte Preuss. Akad. Der Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 89, 85–89. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Duren, P.L. Grundlehren der Mathematischen Wissenschaften, Band 259. In Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis. Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Studia Univ. Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Netenyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A. 1984, 5, 559–568. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Çağlar, M.; Deniz, E.; Srivastava, H.M. Sėcond Hankel determinant for certain subclasses of bi-univalent functions. Turk.J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A.; Zubair, S.M. Generalized error functions with applications to probability and heat conduction. Int. J. Appl. Math. 2002, 9, 259–278. [Google Scholar]
- Elbert, A.; Laforgia, A. The zeros of the complementary error function. Numer. Algorithms 2008, 49, 153–157. [Google Scholar] [CrossRef]
- Caslin, J.C.; Fettis, H.E.; Cramer, K.R. Complex zeros od the error function and the complementary error function. Math. Comp. 1973, 27, 401–407. [Google Scholar]
- Ramachandran, C.; Vanitha, L.; Kanas, S. Certain results on q-starlike and q-convex error functions. Math. Slovaca. 2018, 68, 361–368. [Google Scholar] [CrossRef]
- Alzer, H. Error function inequalities. Adv. Comput. Math. 2010, 33, 349–379. [Google Scholar] [CrossRef]
- Coman, D. The radius of starlikeness for the error function. Stud. Univ. Babes-Bolya. Math. 1991, 36, 13–16. [Google Scholar]
- Buyankara, M.; Çağlar, M.; Cotîrlă, L.-I. New subclasses of bi-Univalent functions with respect to the symmetric points defined by Bernoulli Polynomials. Axioms 2022, 11, 652. [Google Scholar] [CrossRef]
- Buyankara, M.; Çağlar, M. On Fekete-Szego problem for a new subclass of bi-univalent functions defined by Bernoulli polynomials. Acta Univ. Apulensis 2022, 71, 137–145. [Google Scholar]
- Korkmaz, Y.; Akta, I. Fekete-Szego problem for two new subclasses of bi-univalent functions defined by Bernoulli polynomial. Int. J. Nonlinear Anal. Appl. 2024, 15, 1–10. [Google Scholar]
- Swamy, S.R.; Frasin, B.A.; Kala, V.; Seoudy, T.M. Subfamilies of bi-univalent functions governed by Bernoulii polynomials. J. Math. Computer Sci. 2025, 40, 341–352. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Frasin, B.A.; Amourah, A.; Salah, J. Subfamilies of bi-univalent functions defined by imaginary error functions subordinate to Horadam polynomials. Eur. J. Pure. Appl. Math. 2025, 18, 5678. [Google Scholar] [CrossRef]
- Swamy, S.R.; Kala, V. A comprehensive subclass of bi-univalent functions related to imaginary error function subordinate to Bernoulli polynomials. Math. Methods Appl. Sci. 2025. [Google Scholar] [CrossRef]
- Swamy, S.R.; Kumar, P.; Geethalakshmi, N.M. Some bi-univalent function subfamilies established by imaginary error function linked to Bernoulli polynomials. Turk. J. Inequalities 2025, in press. [Google Scholar]
- Öztürk, R.; Aktaş, İ. Coefficient Estimate and Fekete-Szegö Problems for certain new subclasses of Bi-univalent functions defined by generalized bivariate Fibonacci polynomial. Sahand Commun. Math. Anal. 2024, 21, 35–53. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altınkaya, Ş.; Yalçın, S. Certain Subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
- Swamy, S.R.; Breaz, D.; Kala, V.; Mamatha, P.K.; Cotîrlă, L.-I.; Rapeanu, E. Initial Coefficient bounds analysis for novel subclasses of bi-univalent functions linked with Lucas-Balancing polynomials. Mathematics 2024, 12, 1325. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlă, L.-I. Applications of (M,N)-Lucas Polynomials on a certain family of bi-univalent functions. Mathematics 2022, 10, 595. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldawish, I.; Swamy, S.R.; Frasin, B.A.; Chandrashekharaiah, S. Bi-Univalent Function Classes Defined by Imaginary Error Function and Bernoulli Polynomials. Axioms 2025, 14, 731. https://doi.org/10.3390/axioms14100731
Aldawish I, Swamy SR, Frasin BA, Chandrashekharaiah S. Bi-Univalent Function Classes Defined by Imaginary Error Function and Bernoulli Polynomials. Axioms. 2025; 14(10):731. https://doi.org/10.3390/axioms14100731
Chicago/Turabian StyleAldawish, Ibtisam, Sondekola Rudra Swamy, Basem Aref Frasin, and Supriya Chandrashekharaiah. 2025. "Bi-Univalent Function Classes Defined by Imaginary Error Function and Bernoulli Polynomials" Axioms 14, no. 10: 731. https://doi.org/10.3390/axioms14100731
APA StyleAldawish, I., Swamy, S. R., Frasin, B. A., & Chandrashekharaiah, S. (2025). Bi-Univalent Function Classes Defined by Imaginary Error Function and Bernoulli Polynomials. Axioms, 14(10), 731. https://doi.org/10.3390/axioms14100731