Analyzing Uniqueness of Solutions in Nonlinear Fractional Differential Equations with Discontinuities Using Lebesgue Spaces
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asztalos, B.; Palla, G.; Czegel, D. Anomalous diffusion analysis of semantic evolution in major Indo-European languages. PLoS ONE 2024, 19, e0298650. [Google Scholar] [CrossRef]
- Kumar, M.; Madhumita, M.; Prabhakar, P.K.; Basu, S. Refractance window drying of food and biological materials: Status on mechanisms, diffusion modelling and hybrid drying approach. Crit. Rev. Food Sci. Nutr. 2024, 64, 3458–3481. [Google Scholar] [CrossRef] [PubMed]
- Castillo, R.; Loayza, M.; Viana, A. Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces. Fract. Calc. Appl. Anal. 2021, 24, 1193–1219. [Google Scholar] [CrossRef]
- Bandaliyev, R.A.; Mamedov, I.G.; Mardanov, M.J.; Melikov, T.K. Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces. Optim. Lett. 2020, 14, 1519–1532. [Google Scholar] [CrossRef]
- Rusyaman, E.; Munandar, D.; Chaerani, D.; Johar, D.A.; Ashgi, R. A Bibliometric Analysis for Lebesgue Measure Integration in Optimization. Int. J. Glob. Oper. Res. 2021, 2, 54–63. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Abbas, S.; Qurashi, M.A.; Baleanu, D. A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations. Adv. Differ. Equ. 2020, 2020, 28. [Google Scholar] [CrossRef]
- Singh, M.; Das, S.; Rajeev; Ong, S.H. Novel operational matrix method for the numerical solution of nonlinear reaction–advection–diffusion equation of fractional order. Comput. Appl. Math. 2022, 41, 306. [Google Scholar] [CrossRef]
- Khan, H.; Alzabut, J.; Gulzar, H.; Tunc, O.; Pinelas, S. On system of variable order nonlinear p-Laplacian fractional differential equations with biological application. Mathematics 2023, 11, 1913. [Google Scholar] [CrossRef]
- Shafiullah; Shah, K.; Sarwar, M.; Abdeljawad, T. On theoretical and numerical analysis of fractal–fractional non-linear hybrid differential equations. Nonlinear Eng. 2024, 13, 20220372. [Google Scholar] [CrossRef]
- Shivanian, E. On the existence and uniqueness of the solution of a nonlinear fractional differential equation with integral boundary condition. J. Nonlinear Math. Phys. 2023, 30, 1345–1356. [Google Scholar] [CrossRef]
- Lan, K. Existence and uniqueness of solutions of nonlinear Cauchy-type problems for first-order fractional differential equations. Math. Methods Appl. Sci. 2024, 47, 535–555. [Google Scholar] [CrossRef]
- Sun, J.P.; Fang, L.; Zhao, Y.H.; Ding, Q. Existence and uniqueness of solutions for multi-order fractional differential equations with integral boundary conditions. Bound. Value Probl. 2024, 2024, 5. [Google Scholar] [CrossRef]
- Yasmin, H.; Iqbal, N. A Comparative Study of the Fractional-Order Nonlinear System of Physical Models via Analytical Methods. Math. Probl. Eng. 2022, 2022, 7488996. [Google Scholar] [CrossRef]
- Rahman, M.; Sun, M.; Boulaaras, S.; Baleanu, D. Bifurcations, chaotic behavior, sensitivity analysis, and various soliton solutions for the extended nonlinear Schrodinger equation. Bound. Value Probl. 2024, 2024, 15. [Google Scholar] [CrossRef]
- Qian, E.; Kramer, B.; Peherstorfer, B.; Willcox, K. Lift and learn: Physics-informed machine learning for large-scale nonlinear dynamical systems. Phys. Nonlinear Phenom. 2020, 406, 132401. [Google Scholar] [CrossRef]
- Al-Essa, L.A.; Ur Rahman, M. A survey on fractal fractional nonlinear Kawahara equation theoretical and computational analysis. Sci. Rep. 2024, 14, 6990. [Google Scholar] [CrossRef] [PubMed]
- Tuan, N.H. Global existence and convergence results for a class of nonlinear time fractional diffusion equation. Nonlinearity 2023, 36, 5144. [Google Scholar] [CrossRef]
- Zheng, K.; Raza, A.; Abed, A.M.; Khursheed, H.; Seddek, L.F.; Ali, A.H.; UI Haq, A. New fractional approach for the simulation of (Ag) and (TiO2) mixed hybrid nanofluid flowing through a channel: Fractal fractional derivative. Case Stud. Therm. Eng. 2023, 45, 102948. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Agarwal, R.P.; Lakshmikantham, V. Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations; World Scientific: Singapore, 1993; Volume 6. [Google Scholar]
- Yoruk, F.; Bhaskar, T.G.; Agarwal, R.P. New uniqueness results for fractional differential equations. Appl. Anal. 2013, 92, 259–269. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands , 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Delbosco, D. Fractional calculus and function spaces. J. Fract. Calc. Appl. 1994, 6, 45–53. [Google Scholar]
- Henry, D. Geometric Theory of Semi Linear Parabolic Equations; Springer: Berlin/Heidelberge, Germany; New York, NY, USA, 1981. [Google Scholar]
- Capar, S.; Selamlar, H.T.; Yavuz, I.; Taylan, A.S.; Yapar, G. Ata method’s performance in the M4 competition. Hacet. J. Math. Stat. 2023, 52, 268–276. [Google Scholar]
- Bilgici, S.S.; San, M. Existence and Uniqueness Results for a nonlinear fractional differential equations of order σ∈(1,2). arXiv 2023, arXiv:2007.10128. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafeez, F.; Jeelani, M.B.; Alqahtani, N.A. Analyzing Uniqueness of Solutions in Nonlinear Fractional Differential Equations with Discontinuities Using Lebesgue Spaces. Axioms 2025, 14, 26. https://doi.org/10.3390/axioms14010026
Hafeez F, Jeelani MB, Alqahtani NA. Analyzing Uniqueness of Solutions in Nonlinear Fractional Differential Equations with Discontinuities Using Lebesgue Spaces. Axioms. 2025; 14(1):26. https://doi.org/10.3390/axioms14010026
Chicago/Turabian StyleHafeez, Farva, Mdi Begum Jeelani, and Nouf Abdulrahman Alqahtani. 2025. "Analyzing Uniqueness of Solutions in Nonlinear Fractional Differential Equations with Discontinuities Using Lebesgue Spaces" Axioms 14, no. 1: 26. https://doi.org/10.3390/axioms14010026
APA StyleHafeez, F., Jeelani, M. B., & Alqahtani, N. A. (2025). Analyzing Uniqueness of Solutions in Nonlinear Fractional Differential Equations with Discontinuities Using Lebesgue Spaces. Axioms, 14(1), 26. https://doi.org/10.3390/axioms14010026