Existence and Asymptotic Estimates of the Maximal and Minimal Solutions for a Coupled Tempered Fractional Differential System with Different Orders
Abstract
1. Introduction
2. Preliminaries and Lemmas
3. Main Results
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A singular fractional Kelvin-Voigt model involving a nonlinear operator and their convergence properties. Bound. Value Probl. 2019, 2019, 112. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204, pp. 1–523. [Google Scholar]
- Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation. Math. Modell. Anal. 2018, 23, 611–626. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Tian, H.; Wu, Y. Upper and Lower Solution Method for a Singular Tempered Fractional Equation with a p-Laplacian Operator. Fractal Fract. 2023, 7, 522. [Google Scholar] [CrossRef]
- Ren, T.; Li, S.; Zhang, X.; Liu, L. Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes. Bound. Value Probl. 2017, 2017, 118. [Google Scholar] [CrossRef]
- Zhang, J.; Song, J.; Chen, H. A priori error estimates for spectral galerkin approximations of integral state-constrained fractional optimal control problems. Adv. Appl. Math. Mech. 2023, 15, 568–582. [Google Scholar] [CrossRef]
- Wang, C.; Hou, X.; Wu, Q.; Dang, P.; Fu, Z. Fractional Fourier series on the torus and applications. Fractal Fract. 2024, 8, 494. [Google Scholar] [CrossRef]
- Gu, Q.; Chen, Y.; Zhou, J.; Huang, J. A fast linearized virtual element method on graded meshes for nonlinear time-fractional diffusion equations. Numer. Algorithms 2024, 97, 1141–1177. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Jhang, S.; Kang, Q. Approximation theorems associated with multidimensional fractional fouried reansform and applications in Laplace and heat equations. Fractal Fract. 2022, 6, 625. [Google Scholar] [CrossRef]
- Matar, M.; Abu, S.; Alzabut, J. On solvability of nonlinear fractional differential systems involving nonlocal initial conditions. Math. Methods Appl. Sci. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Cartea, Á.; Negrete, D. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 2007, 76, 041105. [Google Scholar] [CrossRef]
- Kuang, N.; Xie, H. Derivative of self-intersection local time for the sub-bifractional Brownian motion. AIMS Math. 2022, 7, 10286–10302. [Google Scholar] [CrossRef]
- Raza, A.; Khan, U.; Zaib, A.; Ishak, A.; Hussain, S.M. Insights into the thermodynamic efficiency of mixed convective hybrid nanofluid flow over a vertical channel through a fractal fractional computation. Multidiscip. Model. Mater. Struct. 2025. [Google Scholar] [CrossRef]
- Ahmad, Z.; Crisci, S.; Murtaza, S.; Toraldo, G. Numerical insights of fractal–fractional modeling of magnetohydrodynamic Casson hybrid nanofluid with heat transfer enhancement. Math. Methods Appl. Sci. 2024, 47, 9046–9066. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, 2018, 82. [Google Scholar] [CrossRef]
- Fu, Z.; Lin, Y.; Yang, D.; Yang, S. Fractional Fourier transforms meet Riesz potentials and image processing. SIAM J. Imaging Sci. 2024, 17, 476–500. [Google Scholar] [CrossRef]
- Benson, D.; Wheatcraft, S.; Meerschaert, M. The fractional-order governing equation of Lévy motion. Water Resour. Res. 2000, 36, 1413–1423. [Google Scholar] [CrossRef]
- Ahmad, Z.; Bonanomi, G.; Cardone, A.; Iuorio, A.; Toraldo, G.; Giannino, F. Fractal-fractional Sirs model for the disease dynamics in both prey and predator with singular and nonsingular kernels. J. Biol. Syst. 2024, 32, 1487–1520. [Google Scholar] [CrossRef]
- Khan, M.A.; Atangana, A. Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex. Eng. J. 2020, 59, 2379–2389. [Google Scholar] [CrossRef]
- Duong, X.; Lacey, M.; Li, J.; Wick, B.; Wu, Q. Commutators of Cauchy-Szego type integrals for domains in Cn with minimal smoothness. Indiana Univ. Math. J. 2021, 70, 1505–1541. [Google Scholar] [CrossRef]
- Fu, Z.; Lu, S.; Shi, S. Two characterizations of central BMO space via the commutators of Hardy operators. Forum Math. Gruyter 2021, 33, 505–529. [Google Scholar] [CrossRef]
- Gong, R.; Vempati, M.N.; Wu, Q.; Xie, P. Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces. J. Aust. Math. Soc. 2022, 113, 36–56. [Google Scholar] [CrossRef]
- Li, P.; Shi, S.; Hu, R.; Zhai, Z. Embeddings of function spaces via the Caffarelli–Silvestre extension, capacities and Wolff potentials. Nonlinear Anal. 2022, 217, 112758. [Google Scholar] [CrossRef]
- Fu, Z.; Gong, R.; Pozzi, E.; Wu, Q. Cauchy–Szegö commutators on weighted Morrey spaces. Math. Nachrichten 2023, 296, 1859–1885. [Google Scholar] [CrossRef]
- Fu, Z.; Hou, X.; Lee, M.Y.; Li, J. A study of one-sided singular integral and function space via reproducing formula. J. Geom. Anal. 2023, 33, 289. [Google Scholar] [CrossRef]
- Fu, Z.; Pozzi, E.; Wu, Q. Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions. Front. Math. China 2021, 2021, 1–28. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Q.; Wang, W.; Wu, Q. Atomic decomposition theorem for Hardy spaces on products of Siegel upper half spaces and Bi-parameter Hardy spaces. J. Geom. Anal. 2023, 33, 351. [Google Scholar] [CrossRef]
- Hou, X.; Wu, H. Weighted compactness for Calderón type commutators and oscillatory operators. Rocky Mt. J. Math. 2022, 52, 1661–1681. [Google Scholar] [CrossRef]
- Dang, P.; Du, J.; Qian, T. Riemann boundary value problems for monogenic functions on the hyperplane. Adv. Appl. Clifford Algebr. 2022, 32, 29. [Google Scholar] [CrossRef]
- Chang, D.; Duong, X.; Li, J.; Wang, W.; Wu, Q. An explicit formula of Cauchy-Szegö kernel for quaternionic Siegel upper half space and applications. Indiana Univ. Math. J. 2021, 70, 2451–2477. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G. Singular Hardy–Adams inequalities on hyperbolic spaces of any even dimension. Ann. Pol. Math. Inst. Mat. Pol. Akad. Nauk. 2022, 129, 175–192. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y.; Yang, C. Solvability of some Riemann-Hilbert problems related to dirac operator with gradient potential in ℝ3. J. Appl. Anal. Comput. 2024, 14, 976–985. [Google Scholar] [CrossRef]
- Chen, W.; Fu, Z.; Grafakos, L.; Wu, Y. Fractional Fourier transforms on Lp and applications. Appl. Comput. Harmon. Anal. 2021, 55, 71–96. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y.; Lin, R. Some integral representation formulas and Schwarz lemmas related to perturbed Dirac operators. J. Appl. Anal. Comput. 2022, 12, 2475–2487. [Google Scholar] [CrossRef]
- Fu, Z.; Grafakos, L.; Lin, Y.; Wu, Y.; Yang, S. Riesz transform associated with the fractional Fourier transform and applications in image edge detection. Appl. Comput. Harmon. Anal. 2023, 66, 211–235. [Google Scholar] [CrossRef]
- Shukla, R.; Wisnicki, A. Iterative methods for monotone nonexpansive mappings in uniformly convex spaces. Adv. Nonlinear Anal. 2021, 10, 1061–1070. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Tian, H.; Wu, Y. The Iterative Properties for Positive Solutions of a Tempered Fractional Equation. Fractal Fract. 2023, 7, 761. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J.; Wu, Y.; Cui, Y. The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach. Appl. Math. Lett. 2020, 100, 106018. [Google Scholar] [CrossRef]
- Guo, L.; Liu, L.; Wang, Y. Maximal and minimal iterative positive solutions for p-laplacian hadamard fractional differential equations with the derivative term contained in the nonlinear term. AIMS. Math. 2021, 6, 12583–12598. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J.; Wu, Y.; Wiwatanapataphee, B. Iterative properties of solution for a general singular n-Hessian equation with decreasing nonlinearity. Appl. Math. Lett. 2021, 112, 106826. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y. Iterative solutions for the differential equation with p-Laplacian on infinite interval. J. Funct. Spaces 2021, 2021, 8765932. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Wu, Y.; Wiwatanapataphee, B. A necessary and sufficient condition for the existence of entire large solutions to a Hessian system. Appl. Math. Lett. 2023, 145, 108745. [Google Scholar] [CrossRef]
- Ge, L.; Niu, F.; Zhou, W. Convergence analysis and error estimate for distributed optimal control problems governed by Stokes equations with velocity-constraint. Adv. Appl. Math. Mech. 2022, 14, 33–55. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Jiang, J.; Wu, Y.; Cui, Y. The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general k-Hessian equations. Appl. Math. Lett. 2020, 102, 106124. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.; Zhang, Z. A posteriori error estimates of spectral approximations for second order partial differential equations in spherical geometries. J. Sci. Comput. 2022, 90, 56. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, Y.; Zhou, J. A Legendre spectral method for multidimensional partial Volterra integro-differential equations. J. Comput. Appl. Math. 2024, 436, 115302. [Google Scholar] [CrossRef]
- Jia, Z. Global boundedness of weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and nonlinear production. Discret. Contin. Dyn. Syst.-Ser. B 2023, 28, 4847–4863. [Google Scholar] [CrossRef]
- Wu, J.; He, X.; Li, X. Finite-time stabilization of time-varying nonlinear systems based on a novel differential inequality approach. Appl. Math. Comput. 2022, 420, 126895. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W. On strongly indefinite schrödinger equations with non-periodic potential. J. Appl. Anal. Comput. 2023, 13, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Jia, Z. Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source. Acta Math. Sci. 2024, 44, 909–924. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.; Jhang, S. On nontrivial solutions of nonlinear Schrödinger equations with sign-changing potential. Adv. Differ. Equ. 2021, 2021, 232. [Google Scholar] [CrossRef]
- Chen, W.; Fu, Z.; Wu, Y. Positive ground states for nonlinear Schrödinger–Kirchhoff equations with periodic potential or potential well in R3. Bound. Value Probl. 2022, 2022, 97. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y. Nonlinear Riemann type problems associated to Hermitian Helmholtz equations. Complex Var. Elliptic Equ. 2023, 68, 763–775. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, T.; Vasil’ev, V.I.; Wang, G. Complex structure-preserving method for Schrödinger equations in quaternionic quantum mechanics. Numer. Algorithms 2024, 97, 271–287. [Google Scholar] [CrossRef]
- Ai, B.; Jia, Z. The global existence and boundedness of solutions to a Chemotaxis–Haptotaxis model with nonlinear diffusion and signal production. Mathematics 2024, 12, 2577. [Google Scholar] [CrossRef]
- Zhang, X.; Tain, H.; Wu, Y.; Wiwatanapataphee, B. The radial solution for an eigenvalue problem of singular augmented k-Hessian equation. Appl. Math. Lett. 2022, 134, 108330. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, P.; Wu, Y. The eigenvalue problem of a singular k-Hessian equation. Appl. Math. Lett. 2022, 124, 107666. [Google Scholar] [CrossRef]
- Boutiara, A.; Benbachir, M.; Alzabut, J.; Samei, M.E. Monotone Iterative and Upper-Lower Solution Techniques for Solving the Nonlinear ψ-Caputo Fractional Boundary Value Problem. Fractal Fract. 2021, 5, 194. [Google Scholar] [CrossRef]
- Quan, H.; Liu, X.; Jia, M. The method of upper and lower solutions for a class of fractional differential coupled systems. Adv. Differ. Equ. 2021, 2021, 263. [Google Scholar] [CrossRef]
- Yu, Z.; Bai, Z.; Shang, S. Upper and lower solutions method for a class of second-order coupled systems. Bound. Value Probl. 2024, 2024, 30. [Google Scholar] [CrossRef]
- He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions. Bound. Value Probl. 2018, 2018, 189. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L.; Wang, G. Fractional non-linear regularity, potential and balayage. J. Geom. Anal. 2022, 32, 221. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Q.; Yang, Y.; Dang, P.; Ren, G. Riemann-Liouville fractional integrals and derivatives on Morrey spaces and applications to a Cauchy-type problem. J. Appl. Anal. Comput. 2024, 14, 1078–1096. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, G. Fractional Adams-Moser-Trudinger type inequality with singular term in Lorentz space and Lp space. J. Appl. Anal. Comput. 2024, 14, 133–145. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Zi, Y.; Li, J. Solvability of fractional differential system with parameters and singular nonlinear terms. AIMS Math. 2024, 9, 22435–22453. [Google Scholar] [CrossRef]
- Shi, S.; Zhai, Z.; Zhang, L. Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional p-Laplace and the fractional p-convexity. Adv. Calc. Var. 2023, 17, 195–207. [Google Scholar] [CrossRef]
- Xue, Y.; Wei, Y. Ground states of nonlocal fractional Schrödinger equations with potentials well. Taiwan. J. Math. 2022, 26, 1203–1217. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Li, C.; Cai, J.; Zhang, B. Solvability for a higher-order Hadamard fractional differential model with a sign-changing nonlinearity dependent on the parameter ϱ. J. Appl. Anal. Comput. 2024, 14, 2762–2776. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, P.; Zhou, W. Two-grid finite element method for time-fractional nonlinear Schrödinger equation. J. Comput. Math. 2024, 42, 1124–1144. [Google Scholar] [CrossRef]
- Beran, J. Statistics for Long-Memory Processes; Routledge: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Meerschaert, M.; Nane, E.; Vellaisamy, P. The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 2011, 16, 1600–1620. [Google Scholar] [CrossRef]
- Laskin, N. Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 2003, 8, 201–213. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Y.; Li, L.; Wu, Y.; Wiwatanapataphee, B. Multiple positive solutions for a singular tempered fractional equation with lower order tempered fractional derivative. Electron. Res. Arch. 2024, 32, 1998–2015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Zhang, X.; Li, L.; Jiang, Y.; Wu, Y. Existence and Asymptotic Estimates of the Maximal and Minimal Solutions for a Coupled Tempered Fractional Differential System with Different Orders. Axioms 2025, 14, 92. https://doi.org/10.3390/axioms14020092
Chen P, Zhang X, Li L, Jiang Y, Wu Y. Existence and Asymptotic Estimates of the Maximal and Minimal Solutions for a Coupled Tempered Fractional Differential System with Different Orders. Axioms. 2025; 14(2):92. https://doi.org/10.3390/axioms14020092
Chicago/Turabian StyleChen, Peng, Xinguang Zhang, Lishuang Li, Yongsheng Jiang, and Yonghong Wu. 2025. "Existence and Asymptotic Estimates of the Maximal and Minimal Solutions for a Coupled Tempered Fractional Differential System with Different Orders" Axioms 14, no. 2: 92. https://doi.org/10.3390/axioms14020092
APA StyleChen, P., Zhang, X., Li, L., Jiang, Y., & Wu, Y. (2025). Existence and Asymptotic Estimates of the Maximal and Minimal Solutions for a Coupled Tempered Fractional Differential System with Different Orders. Axioms, 14(2), 92. https://doi.org/10.3390/axioms14020092