A New Contribution in Fractional Integral Calculus and Inequalities over the Coordinated Fuzzy Codomain
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Examples
5. Conclusions and Future Plans
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baleanu, D.; Jajarmi, A.; Mohammadi, H. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
- Shaked, M.; Shanthikumar, J.G. Stochastic Convexity and Its Applications. Adv. Appl. Probab. 1988, 20, 427–446. [Google Scholar] [CrossRef]
- Shi, X.L.; Cao, J.; Li, X.; Zhang, J.; Gong, H.; Liu, S. Polyetheretherketone fiber-supported polyethylene glycols for phase-transfer catalysis in its surface layer. Colloids Surf. A Physicochem. Eng. Asp. 2024, 694, 134160. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Zheng, X.; Zhao, Y.; Wang, J. 3D path planning in threat environment based on fuzzy logic. J. Intell. Fuzzy Syst. 2024, 1, 7021–7034. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, F.; Shi, P. Non-fragile finite-time stabilization for discrete mean-field stochastic systems. IEEE Trans. Autom. Control. 2023, 68, 6423–6430. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Zhao, D.; Shi, L. Online Pareto optimal control of mean-field stochastic multi-player systems using policy iteration. Sci. China Inf. Sci. 2024, 67, 140202. [Google Scholar] [CrossRef]
- Jia, G.; Luo, J.; Cui, C.; Kou, R.; Tian, Y.; Schubert, M. Valley quantum interference modulated by hyperbolic shear polaritons. Phys. Rev. B 2023, 109, 155417. [Google Scholar] [CrossRef]
- Tian, F.; Liu, Z.; Zhou, J.; Chen, L.; Feng, X.T. Quantifying Post-peak Behavior of Rocks with Type-I, Type-II, and Mixed Fractures by Developing a Quasi-State-Based Peridynamics. Rock Mech. Rock Eng. 2024, 57, 4835–4871. [Google Scholar] [CrossRef]
- Sunaga, T. Theory of an interval algebra and its application to numerical analysis. J. Ind. Appl. Math. 2009, 26, 125–143. [Google Scholar] [CrossRef]
- Guo, S.; Zuo, X.; Wu, W.; Yang, X.; Zhang, J.; Li, Y.; Zhu, S. Mitigation of tropospheric delay induced errors in TS-InSAR ground deformation monitoring. Int. J. Digit. Earth 2024, 17, 2316107. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Zou, Q.; Ye, L.; Zhu, S.; Zhang, H. Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM. J. Hydrol. 2023, 624, 129969. [Google Scholar] [CrossRef]
- Chang, X.; Guo, J.; Qin, H.; Huang, J.; Wang, X.; Ren, P. Single-Objective and Multi-Objective Flood Interval Forecasting Considering Interval Fitting Coefficients. Water Resour. Manag. 2024, 38, 3953–3972. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.; Christelle, M.; Sun, M.; Wen, Z.; Lin, Y.; Xu, J. Automated localization of mandibular landmarks in the construction of mandibular median sagittal plane. Eur. J. Med. Res. 2024, 29, 84. [Google Scholar] [CrossRef]
- Wang, J.R.; Feckan, M. Fractional Hermite–Hadamard Inequalities; de Gruyter: Berlin, Germany, 2018; Volume 22. [Google Scholar]
- Iscan, I. Hermite–Hadamard’s inequalities for preinvex functions via fractional integrals and related fractional inequalities. arXiv 2012, arXiv:1204.0272. [Google Scholar]
- Pachpatte, B.G. On some inequalities for convex functions. RGMIA Res. 2003, 6, 1–9. [Google Scholar]
- Chen, F. A note on Hermite–Hadamard inequalities for products of convex functions via Riemann–Liouville fractional integrals. Ital. J. Pure Appl. Math. 2014, 33, 299–306. [Google Scholar]
- Khan, M.B.; Zaini, H.G.; Santos-García, G. Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex Fuzzy-Interval-Valued Functions. Int. J. Comput. Intell. Syst. 2022, 15, 28. [Google Scholar] [CrossRef]
- Shi, F.; Ye, G.; Zhao, D.; Liu, W. Some fractional Hermite–Hadamard type inequalities for interval-valued functions. Mathematics 2020, 8, 534. [Google Scholar] [CrossRef]
- Dragomir, S.S. Hermite–Hadamard type inequalities for generalized Riemann–Liouville fractional integrals of h-convex functions. Math. Methods Appl. Sci. 2021, 44, 2364–2380. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Treanta, S.; Soliman, M.S.; Zaini, H.G. Hermite–Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
- Kunt, M.; Iscan, I.; Yazıcı, N.; Gözütok, U. On New Inequalities of Hermite–Hadamard–Fejer Type for Harmonically Convex Functions via Fractional Integrals. arXiv 2016, arXiv:1409.5243. [Google Scholar] [CrossRef] [PubMed]
- Bin-Mohsin, B.; Awan, M.U.; Noor, M.A.; Riahi, L.; Noor, K.I.; Almutairi, B. New Quantum Hermite–Hadamard Inequalities Utilizing Harmonic Convexity of the Functions. IEEE Access 2019, 7, 20479–20483. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Jin, C.; Fang, R.; Hua, R.; Zang, X.; Zhang, H. The indicative role of inflammatory index in the progression of periodontal attachment loss. Eur. J. Med. Res. 2023, 28, 287. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, W.; Hua, R.; Wang, Y.; Li, Y.; Zhang, H. Promising dawn in tumor microenvironment therapy: Engineering oral bacteria. Int. J. Oral Sci. 2024, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Chuai, Y.; Dai, B.; Liu, X.; Hu, M.; Wang, Y.; Zhang, H. Association of vitamin K, fibre intake and progression of periodontal attachment loss in American adults. BMC Oral Health 2023, 23, 303. [Google Scholar] [CrossRef]
- Liu, X.; Dai, B.; Chuai, Y.; Hu, M.; Zhang, H. Associations between vitamin D levels and periodontal attachment loss. Clin. Oral Investig. 2023, 27, 4727–4733. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, C.; Li, W.; Huang, M.; Wu, W.; Koh, C.S.; Blaabjerg, F. A Novel Hybrid Excitation Magnetic Lead Screw and Its Transient Sub-Domain Analytical Model for Wave Energy Conversion. IEEE Trans. Energy Convers. 2024, 39, 1726–1737. [Google Scholar] [CrossRef]
- Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite–Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions. Mathematics 2022, 10, 264. [Google Scholar] [CrossRef]
- Bhunia, A.K.; Samanta, S.S. A study of interval metric and its application in multi-objective optimization with interval objectives. Comput. Ind. Eng. 2014, 74, 169–178. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Y.; Jiang, Y.; Cao, Y.; Wang, Z.; Li, J.; Zhao, G. Release Pattern of Light Aromatic Hydrocarbons during the Biomass Roasting Process. Molecules 2024, 29, 1188. [Google Scholar] [CrossRef]
- Tang, H.; Li, Y.; Zhu, Z.; Zhan, Y.; Li, Y.; Li, K.; Yang, X. Rational design of high-performance epoxy/expandable microsphere foam with outstanding mechanical, thermal, and dielectric properties. J. Appl. Polym. Sci. 2024, 141, 55502. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, S.; Yang, Q.; Liew, S.C. Account Service Network: A Unified Decentralized Web 3.0 Portal with Credible Anonymity. IEEE Netw. 2023, 37, 101–108. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, T.; Han, L.; Feng, Z. Single-Stage Multi-Input Buck Type High-Frequency Link’s Inverters with Series and Simultaneous Power Supply. IEEE Trans. Power Electron. 2021, 37, 7411–7421. [Google Scholar] [CrossRef]
- Guo, B.; Zhao, J.; Xu, Y.; Wen, X.; Ren, X.; Huang, X.; Niu, S.; Dai, Y.; Gao, R.; Xu, P.; et al. Noble Metal Phosphides Supported on CoNi Metaphosphate for Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2024, 16, 8939–8948. [Google Scholar] [CrossRef]
- Chen, F. Extensions of the Hermite–Hadamard Inequality for Harmonically Convex Functions via Fractional Integrals. Appl. Math. Comput. 2015, 268, 121–128. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic, Volume 295 of Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Costa, T.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Goetschel, R., Jr.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
- Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fuzzy Riemann–Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions. Symmetry 2022, 14, 313. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Zaini, H.G.; Treanță, S.; Soliman, M.S. Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus. Mathematics 2022, 10, 534. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abuahalnaja, K. Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef] [PubMed]
- Budak, H.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for products of two co-ordinated convex mappings via fractional integrals. Int. J. Appl. Math. Stat. 2019, 58, 11–30. [Google Scholar]
- Sarikaya, M.Z. On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transform. Spec. Funct. 2013, 25, 134–147. [Google Scholar]
- Chen, D.; Zhao, T.; Xu, S. Single-stage multi-input buck type high-frequency link’s inverters with multiwinding and time-sharing power supply. IEEE Trans. Power Electron. 2022, 37, 12763–12773. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, J.; Qin, S. SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio. Sci. China Technol. Sci. 2023, 66, 2996–3010. [Google Scholar] [CrossRef]
- Meng, S.; Meng, F.; Chi, H.; Chen, H.; Pang, A. A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries. J. Frankl. Inst. 2023, 360, 11397–11413. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Cao, G.; Yuan, Y.; Yao, X.; Qi, L. Intelligent control of multilegged robot smooth motion: A review. IEEE Access 2023, 11, 86645–86685. [Google Scholar] [CrossRef]
- Hong, J.; Gui, L.; Cao, J. Analysis and experimental verification of the tangential force effect on electromagnetic vibration of PM motor. IEEE Trans. Energy Convers. 2023, 38, 1893–1902. [Google Scholar] [CrossRef]
- Zhang, G.; Li, W.; Yu, M.; Huang, H.; Wang, Y.; Han, Z.; Xiao, M. Electric-Field-Driven Printed 3D Highly Ordered Microstructure with Cell Feature Size Promotes the Maturation of Engineered Cardiac Tissues. Adv. Sci. 2023, 10, 2206264. [Google Scholar] [CrossRef]
- Khan, M.B.; Althobaiti, A.; Lee, C.-C.; Soliman, M.S.; Li, C.-T. Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities. Mathematics 2023, 11, 2851. [Google Scholar] [CrossRef]
- Khan, M.B.; Othman, H.A.; Santos-García, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Solitons Fractals 2023, 169, 113274. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Jafari, S.; Maash, A.A.; Soliman, M.S. Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy up and down Relation. Symmetry 2023, 15, 862. [Google Scholar] [CrossRef]
- Khan, M.B.; Rahman, A.U.; Maash, A.A.; Treanțǎ, S.; Soliman, M.S. Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation. Axioms 2023, 12, 365. [Google Scholar] [CrossRef]
- Khan, M.B.; Stević, Ž.; Maash, A.A.; Noor, M.A.; Soliman, M.S. Properties of Convex Fuzzy-Number-Valued Functions on Harmonic Convex Set in the Second Sense and Related Inequalities via up and down Fuzzy Relation. Axioms 2023, 12, 399. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Althobaiti, A.; Althobaiti, S. Some New Properties of Exponential Trigonometric Convex Functions Using Up and Down Relations over Fuzzy Numbers and Related Inequalities through Fuzzy Fractional Integral Operators Having Exponential Kernels. Fractal Fract. 2023, 7, 567. [Google Scholar] [CrossRef]
- Khan, M.B.; Guiro, J.L.G. Riemann Liouville fractional-like integral operators, convex-like real-valued mappings and their applications over fuzzy domain. Chaos Solitons Fractals 2023, 177, 114196. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
- Zhao, D.F.; Ali, M.A.; Murtaza, G. On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 570. [Google Scholar] [CrossRef]
- Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y. Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions. Open Math. 2021, 19, 1081–1097. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Al Ahmadi, A.A.; Lupas, A.A.; Hakami, K.H. A New Contribution in Fractional Integral Calculus and Inequalities over the Coordinated Fuzzy Codomain. Axioms 2024, 13, 666. https://doi.org/10.3390/axioms13100666
Zhou Z, Al Ahmadi AA, Lupas AA, Hakami KH. A New Contribution in Fractional Integral Calculus and Inequalities over the Coordinated Fuzzy Codomain. Axioms. 2024; 13(10):666. https://doi.org/10.3390/axioms13100666
Chicago/Turabian StyleZhou, Zizhao, Ahmad Aziz Al Ahmadi, Alina Alb Lupas, and Khalil Hadi Hakami. 2024. "A New Contribution in Fractional Integral Calculus and Inequalities over the Coordinated Fuzzy Codomain" Axioms 13, no. 10: 666. https://doi.org/10.3390/axioms13100666
APA StyleZhou, Z., Al Ahmadi, A. A., Lupas, A. A., & Hakami, K. H. (2024). A New Contribution in Fractional Integral Calculus and Inequalities over the Coordinated Fuzzy Codomain. Axioms, 13(10), 666. https://doi.org/10.3390/axioms13100666