Fourier Series Related to p-Trigonometric Functions
Abstract
:1. Introduction
2. Integration of p-Trigonometric Functions
3. Generalized -Fourier Series
- Solution: T generated a p-generalized Fourier series, which is given by
- Solution:
4. -Fourier Series Solutions of Ordinary Differential Equations
- (1)
- T is -periodic,
- (2)
- T and are piecewise continuous differentiable of ,
- (3)
- and are constant with .
- Solution: We find the p-Fourier series of T as
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaglom, I.M. A Simple Non-Euclidean Geometry and Its Physical Basis: An Elementary Account of Galilean Geometry and the Galilean Principle of Relativity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yaglom, I.M. Complex Numbers in Geometry; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Harkin, A.A.; Harkin, J.B. Geometry of generalized complex numbers. Math. Mag. 2004, 77, 118–129. [Google Scholar] [CrossRef]
- Özen, K.E.; Tosun, M. p-Trigonometric approach to elliptic biquaternions. Adv. Appl. Clifford Algebr. 2018, 28, 62. [Google Scholar] [CrossRef]
- Özen, K.E.; Tosun, M. Elliptic matrix representations of elliptic biquaternions and their applications. Int. Electron. J. Geom. 2018, 11, 96–103. [Google Scholar] [CrossRef]
- Erişir, T.; Güngör, M.A. The Holditch-type theorem for the polar moment of inertia of the orbit curve in the generalized complex plane. Adv. Appl. Clifford Algebr. 2016, 26, 1179–1193. [Google Scholar] [CrossRef]
- Erişir, T.; Güngör, M.A. Holditch-Type Theorem for Non-Linear Points in Generalized Complex Plane Cp. Univers. J. Math. Appl. 2018, 1, 239–243. [Google Scholar] [CrossRef]
- Gürses, N.; Yüce, S. One-parameter planar motions in generalized complex number plane CJ. Adv. Appl. Clifford Algebr. 2015, 25, 889–903. [Google Scholar] [CrossRef]
- Eren, K.; Ersoy, S. Burmester theory in Cayley–Klein planes with affine base. J. Geom. 2018, 109, 45. [Google Scholar] [CrossRef]
- Alibrahim, A.H.; Das, S. Bridging the p-Special Functions between the Generalized Hyperbolic and Trigonometric Families. Mathematics 2024, 12, 1242. [Google Scholar] [CrossRef]
- Özen, K.E. On the trigonometric and p-trigonometric functions of elliptical complex variables. Commun. Adv. Math. Sci. 2020, 3, 143–154. [Google Scholar] [CrossRef]
- Zygmund, A. Trigonometric Series; Cambridge University Press: Cambridge, UK, 2002; Volume 1. [Google Scholar]
- Trigub, R.M. Summability of trigonometric Fourier series at-points and a generalization of the Abel–Poisson method. Izv. Math. 2015, 79, 838. [Google Scholar] [CrossRef]
- Bary, N.K. A Treatise on Trigonometric Series: Volume 1; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1. [Google Scholar]
- Folland, G.B. Fourier Analysis and Its Applications; American Mathematical Society: Providence, RI, USA, 2009; Volume 4. [Google Scholar]
- Rønning, F. The role of Fourier series in mathematics and in signal theory. Int. J. Res. Undergrad. Math. Educ. 2021, 7, 189–210. [Google Scholar] [CrossRef]
- Grafakos, L. Classical and Modern Fourier Analysis; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2. [Google Scholar]
- Hardy, G.H.; Rogosinski, W. Fourier Series; Courier Corporation: North Chelmsford, MA, USA, 1999; Volume 1. [Google Scholar]
- Bôcher, M. Introduction to the theory of Fourier’s series. Ann. Math. 1906, 7, 81–152. [Google Scholar] [CrossRef]
- Trigub, R.M.; Belinsky, E.S. Fourier Analysis and Approximation of Functions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Alibrahim, A.H.; Das, S. The forgotten p-versine and p-coversine family of functions revisited. PLoS ONE 2024, 19, e0308529. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alibrahim, A.H.; Das, S. Fourier Series Related to p-Trigonometric Functions. Axioms 2024, 13, 600. https://doi.org/10.3390/axioms13090600
Alibrahim AH, Das S. Fourier Series Related to p-Trigonometric Functions. Axioms. 2024; 13(9):600. https://doi.org/10.3390/axioms13090600
Chicago/Turabian StyleAlibrahim, Ali Hamzah, and Saptarshi Das. 2024. "Fourier Series Related to p-Trigonometric Functions" Axioms 13, no. 9: 600. https://doi.org/10.3390/axioms13090600
APA StyleAlibrahim, A. H., & Das, S. (2024). Fourier Series Related to p-Trigonometric Functions. Axioms, 13(9), 600. https://doi.org/10.3390/axioms13090600