Parseval–Goldstein-Type Theorems for Lebedev–Skalskaya Transforms
Abstract
1. Introduction and Preliminaries
2. Lebedev–Skalskaya Transforms and Their Adjoints over Lebesgue Spaces
2.1. The and Transforms over
2.2. The and Transforms over
2.3. The and Transforms over and ,
- (i)
- (ii)
- (i)
- From (9), the condition (2.1) in Proposition 2.1 of [29] becomesOn the other hand, from (9), the condition (2.2) in Proposition 2.1 of [29] becomesThe scheme of proof is similar for .
- (ii)
- From (9), the condition (2.1) in Proposition 2.1 of [29] becomesOn the other hand, from (9), the condition (2.2) in Proposition 2.1 of [29] becomesThe scheme of proof is similar for .
2.4. The and Transforms over and ,
3. Parseval–Goldstein-Type Theorems
- (i)
- for with , or, alternatively,
- (ii)
- for with .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Mandal, U.K.; Prasad, A. Lebedev-Skalskaya transforms on certain function spaces and associated pseudo-differential operators. Integral Transform. Spec. Funct. 2021, 32, 113–133. [Google Scholar] [CrossRef]
- Mandal, U.K.; Prasad, A. Lebedev-Skalskaya transforms and allied operators on certain function spaces. Integral Transform. Spec. Funct. 2022, 33, 320–340. [Google Scholar] [CrossRef]
- Mandal, U.K.; Prasad, A.; Gupt, A.K. Reverse convolution inequalities for Lebedev-Skalskaya transforms. Forum Math. 2022, 34, 1095–1107. [Google Scholar] [CrossRef]
- Sneddon, I.N. The Use of Integral Transforms; McGraw-Hill Book Co.: New York, NY, USA, 1972. [Google Scholar]
- Yakubovich, S.B. Index Transforms; World Scientific Publishing Company: Singapore, 1996. [Google Scholar]
- Loureiro, A.F.; Yakubovich, S.B. Central factorials under the Kontorovich-Lebedev transforms of polynomials. Integral Transform. Spec. Funct. 2013, 24, 217–238. [Google Scholar] [CrossRef]
- Yakubovich, S.B. On the least values of Lp-norms for the Kontorovich-Lebedev transform and its convolution. J. Approx. Theory 2004, 131, 231–242. [Google Scholar] [CrossRef]
- Yakubovich, S.B. The Kontorovich-Lebedev transformation on Sobolev type spaces. Sarajevo J. Math. 2005, 1, 211–234. [Google Scholar] [CrossRef]
- Yakubovich, S.B.; Fisher, B. On the theory of the Kontorovich-Lebedev transformation on distributions. Proc. Am. Math. Soc. 1994, 122, 773–777. [Google Scholar] [CrossRef]
- Srivastava, H.M.; González, B.J.; Negrín, E.R. New Lp-boundedness properties for the Kontorovich-Lebedev and Mehler-Fock transforms. Integral Transform. Spec. Funct. 2016, 27, 835–845. [Google Scholar] [CrossRef]
- Banerji, P.K.; Loonker, D.; Kalla, S.L. Kontorovich-Lebedev transform for Boehmians. Integral Transform. Spec. Funct. 2009, 20, 905–913. [Google Scholar] [CrossRef]
- Glaeske, H.J.; Hess, A. A convolution connected with the Kontorovich-Lebedev transform. Math. Z. 1986, 193, 67–78. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R. Operational calculi for Kontorovich-Lebedev and Mehler-Fock transforms on distributions with compact support. Rev. Colomb. Mat. 1998, 32, 81–92. [Google Scholar]
- González, B.J.; Negrín, E.R. Abelian theorems for distributional Kontorovich-Lebedev and Mehler-Fock transforms of general order. Banach J. Math. Anal. 2019, 13, 524–537. [Google Scholar] [CrossRef]
- Prasad, A.; Mandal, U.K. Two versions of pseudo-differential operators involving the Kontorovich-Lebedev transform in L2(+;x−1dx). Forum Math. 2018, 30, 31–42. [Google Scholar] [CrossRef]
- Prasad, A.; Mandal, U.K. Boundedness of pseudo-differential operators involving Kontorovich-Lebedev transform. Integral Transform. Spec. Funct. 2017, 28, 300–314. [Google Scholar] [CrossRef]
- Maan, J.; Negrín, E.R. Parseval-Goldstein type theorems for the Kontorovich-Lebedev transform and the Mehler-Fock transform of general order. Filomat, 2024; accepted for publication. [Google Scholar]
- Lebedev, N.N.; Skalskaya, I.P. Some integral transforms related to the Kontorovich-Lebedev transforms. In The Questions of Mathematical Physics; Nauka: Leningrad, Russia, 1976; pp. 68–79. (In Russian) [Google Scholar]
- Rappoport, Y.M. Integral equations and Parseval equalities for the modified Kontorovich-Lebedev transforms. Differ. Uravn. 1981, 17, 1697–1699. (In Russian) [Google Scholar]
- Poruchikov, V.B.; Rappoport, Y.M. On the inversion formulae for the modified Kontorovich-Lebedev transform. Differ. Uravn. 1984, 20, 542–546. (In Russian) [Google Scholar]
- Yakubovich, S.B.; Luchko, Y.F. The Hypergeometric Approach to Integral Transforms and Convolutions; Springer: Dordrecht, The Netherlands, 1994; Volume 287. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, USA; London, UK, 1953; Volume 2. [Google Scholar]
- Dernek, N.; Srivastava, H.M.; Yürekli, O. Parseval-Goldstein type identities involving the L4-transform and the P4-transform and their applications. Integral Transform. Spec. Funct. 2007, 18, 397–408. [Google Scholar] [CrossRef]
- Dernek, N.; Srivastava, H.M.; Yürekli, O. Some Parseval-Goldstein type identities involving the FS,2-transform, the FC,2-transform and the P4-transform and their applications. Appl. Math. Comput. 2008, 202, 327–337. [Google Scholar]
- Maan, J.; Negrín, E.R. Parseval-Goldstein type theorems for the index Whittaker transform. Integral Transform. Spec. Funct. 2024, 1–11. [Google Scholar] [CrossRef]
- Maan, J.; Negrín, E.R. Parseval-Goldstein type theorems for integral transforms in a general setting. Istanb. J. Math. 2024, 2, 33–38. [Google Scholar] [CrossRef]
- Maan, J.; Negrín, E.R. Parseval-Goldstein type theorems for the index 2F1-transform. Int. J. Comput Appl. Math. 2024, 10, 69. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R. Boundedness properties for a class of integral operators including the index transforms and the operators with complex Gaussian kernels. J. Math. Anal. Appl. 2004, 293, 219–226. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R. Weighted Lp inequalities for a class of integral operators including the classical index transforms. J. Math. Anal. Appl. 2001, 258, 711–719. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrín, E.R.; González, B.J.; Maan, J. Parseval–Goldstein-Type Theorems for Lebedev–Skalskaya Transforms. Axioms 2024, 13, 630. https://doi.org/10.3390/axioms13090630
Negrín ER, González BJ, Maan J. Parseval–Goldstein-Type Theorems for Lebedev–Skalskaya Transforms. Axioms. 2024; 13(9):630. https://doi.org/10.3390/axioms13090630
Chicago/Turabian StyleNegrín, Emilio Ramón, Benito Juan González, and Jeetendrasingh Maan. 2024. "Parseval–Goldstein-Type Theorems for Lebedev–Skalskaya Transforms" Axioms 13, no. 9: 630. https://doi.org/10.3390/axioms13090630
APA StyleNegrín, E. R., González, B. J., & Maan, J. (2024). Parseval–Goldstein-Type Theorems for Lebedev–Skalskaya Transforms. Axioms, 13(9), 630. https://doi.org/10.3390/axioms13090630