Uniform Stabilization and Asymptotic Behavior with a Lower Bound of the Maximal Existence Time of a Coupled System’s Semi-Linear Pseudo-Parabolic Equations
Abstract
:1. Introduction
2. Preliminaries
2.1. The Introduction of a Class of Potential Wells
- (i)
- , and .
- (ii)
- uniquely exists such that .
- (iii)
- increases strictly when , decreases strictly when , and reaches the highest value at .
- (iv)
- for , for and , that is, .
- (i)
- , has continuity, and for .
- (ii)
- increases on , decreases upon , and reaches the highest at .
- (i)
- If , then . If , then
- (ii)
- If , then . If , then .
- (iii)
- If , then . If , then .
- (i)
- , where
- (ii)
- , where
- (i)
- If , then .
- (ii)
- If , then .
2.2. The Solution’s Properties of Invariance Sets and Vacuum Isolation
3. Main Results
3.1. Global Existence with the Exponential Decay of the Solution
3.2. The Solution’s Asymptotic Behavior with a Lower Bound on the Maximal Existence Time
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amick, C.J.; Bona, J.L.; Schonbek, M.E. Decay of solutions of some nonlinear wave equations. J. Differ. Equ. 1989, 81, 1–49. [Google Scholar] [CrossRef]
- Benjamin, T.B.; Bona, J.L.; Mahony, J.J. Model equations for long waves in nonlinear dispersive systems. Phil. Trans. Roy. Soc. Lond. Ser. A 1972, 272, 47–78. [Google Scholar]
- Barenblat, G.; Zheltov, I.; Kochiva, I. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 1960, 24, 1286–1303. [Google Scholar] [CrossRef]
- Chen, P.J.; Gurtin, M.E. On a theory of heat conduction involving two temperatures. Z. Ange. Math. Phys. 1968, 19, 614–627. [Google Scholar] [CrossRef]
- Showalter, R.E.; Ting, T.W. Pseudo-parabolic partial differential equations. SIAM J. Math. Anal. 1970, 1, 1–26. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, J.X. An overview of recent studies on the pseudo-parabolic equation. Sci. Sin. Math. 2024, 54, 259–284. [Google Scholar]
- Payne, L.E.; Sattinger, D.H. Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 1975, 22, 273–303. [Google Scholar] [CrossRef]
- Liu, Y.C.; Zhao, J.S. On potential wells and applications to semi-linear hyperbolic equations and parabolic equations. Nonlinear Anal. 2006, 64, 2665–2687. [Google Scholar]
- Benedetto, E.D.; Pierre, M. On the maximum principle for pseudo-parabolic equations. Indiana Univ. Math. J. 1981, 30, 821–854. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, J.X.; Wang, C.P. Cauchy problems of semi-linear pseudo-parabolic equations. J. Differ. Equ. 2009, 246, 4568–4590. [Google Scholar] [CrossRef]
- Xu, R.Z.; Su, J. Global existence and finite time blow-up for a class of semi-linear pseudo-parabolic equations. J. Func. Anal. 2013, 264, 2732–2763. [Google Scholar] [CrossRef]
- Luo, P. Blow-up phenomena for a pseudo-parabolic equation. Math. Meth. Appl. Sci. 2015, 38, 2636–2641. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, G.Y.; Mu, C.L. Analysis of a pseudo-parabolic equation by potential wells. Ann. Mat. Pura. Appl. 2021, 200, 2741–2766. [Google Scholar] [CrossRef]
- Qu, C.Y.; Zhou, W.S. Asymptotic analysis for a pseudo-parabolic equation with nonstandard growth conditions. Appl. Anal. 2022, 101, 4701–4720. [Google Scholar] [CrossRef]
- Lian, W.; Wang, J.; Xu, R.Z. Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. J. Differ. Equ. 2020, 269, 4914–4959. [Google Scholar] [CrossRef]
- Escobedo, M.; Herrero, M.A. Boundedness and blow up for a semi-linear reaction-diffusion system. J. Differ. Equ. 1991, 89, 176–202. [Google Scholar] [CrossRef]
- Yang, J.; Cao, Y.; Zheng, S. Fujita phenomena in nonlinear pseudo-parabolic system. Sci. China Math. 2014, 57, 555–568. [Google Scholar] [CrossRef]
- Xu, R.; Lian, W.; Niu, Y. Global well-posedness of coupled parabolic systems. Sci. China Math. 2020, 63, 321–356. [Google Scholar] [CrossRef]
- Ngoc, L.T.P.; Uyen, K.T.T.; Nhan, N.H.; Long, N.T. On a system of nonlinear pseudo-parabolic equations with Robin-Dirichlet boundary conditions. Commun. Pure Appl. Anal. 2022, 21, 585–623. [Google Scholar] [CrossRef]
- Komornik, V. Exact Controllability and Stabilization: The Multiplier Method; Mason-John Wiley: Paris, France, 1994. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N. Uniform Stabilization and Asymptotic Behavior with a Lower Bound of the Maximal Existence Time of a Coupled System’s Semi-Linear Pseudo-Parabolic Equations. Axioms 2024, 13, 575. https://doi.org/10.3390/axioms13090575
Liu N. Uniform Stabilization and Asymptotic Behavior with a Lower Bound of the Maximal Existence Time of a Coupled System’s Semi-Linear Pseudo-Parabolic Equations. Axioms. 2024; 13(9):575. https://doi.org/10.3390/axioms13090575
Chicago/Turabian StyleLiu, Nian. 2024. "Uniform Stabilization and Asymptotic Behavior with a Lower Bound of the Maximal Existence Time of a Coupled System’s Semi-Linear Pseudo-Parabolic Equations" Axioms 13, no. 9: 575. https://doi.org/10.3390/axioms13090575
APA StyleLiu, N. (2024). Uniform Stabilization and Asymptotic Behavior with a Lower Bound of the Maximal Existence Time of a Coupled System’s Semi-Linear Pseudo-Parabolic Equations. Axioms, 13(9), 575. https://doi.org/10.3390/axioms13090575