Three Existence Results in the Fixed Point Theory
Abstract
:1. Introduction
2. The First Result
3. The Second Result
4. The Third Result
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bargetz, C.; Medjic, E. On the rate of convergence of iterated Bregman projections and of the alternating algorithm. J. Math. Anal. Appl. 2020, 481, 23. [Google Scholar] [CrossRef]
- Du, W.-S. Some generalizations of fixed point theorems of Caristi type and Mizoguchi–Takahashi type under relaxed conditions. Bull. Braz. Math. Soc. 2019, 50, 603–624. [Google Scholar] [CrossRef]
- Karapinar, E.; Mitrovic, Z.; Ozturk, A.; Radenovic, S. On a theorem of Ciric in b-metric spaces. Rend. Circ. Mat. Palermo 2021, 70, 217–225. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhäuser/Springer: Cham, Switzerland, 2015. [Google Scholar]
- Radenovic, S.; Dosenovic, T.; Lampert, T.A.; Golubovic, Z.A. A note on some recent fixed point results for cyclic contractions in b-metric spaces and an application to integral equations. Appl. Math. Comput. 2015, 273, 155–164. [Google Scholar] [CrossRef]
- Rakotch, E. A note on contractive mappings. Proc. Amer. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Bojor, F. Fixed point theorems for Reich type contractions on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895–3901. [Google Scholar] [CrossRef]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Amer. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Suantai, S.; Donganont, M.; Cholamjiak, W. Hybrid methods for a countable family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. Mathematics 2019, 7, 936. [Google Scholar] [CrossRef]
- Suparatulatorn, R.; Cholamjiak, W.; Suanta, S. A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs. Numer. Algorithms 2018, 77, 479–490. [Google Scholar] [CrossRef]
- Younis, M.; Ahmad, H.; Chen, L.; Han, M. Computation and convergence of fixed points in graphical spaces with an application to elastic beam deformations. J. Geom. Phys. 2023, 192, 104955. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94, 6. [Google Scholar] [CrossRef]
- Fabiano, N.; Kadelburg, Z.; Mirkov, N.; Cavic, V.S.; Radenovic, S. On F-contractions: A Survey. Contemp. Math. 2022, 3, 327–342. [Google Scholar] [CrossRef]
- Parvaneh, M.; Farajzadeh, A.P. On weak Wardowski-Presic-type fixed point theorems via noncompactness measure with applications to a system of fractional integral equations. J. Nonlinear Convex Anal. 2023, 24, 1–15. [Google Scholar]
- Rakocevic, V.; Roy, K.; Saha, M. Wardowski and Ciric type fixed point theorems over non-triangular metric spaces. Quaest. Math. 2022, 45, 1759–1769. [Google Scholar] [CrossRef]
- Cho, S.-H. Fixed point theorems for set-valued contractions in metric spaces. Axioms 2024, 13, 86. [Google Scholar] [CrossRef]
- Rudin, W. Principles of Mathematical Analysis; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Uddin, I.; Garodia, C.; Nieto, J.J. Mann iteration for monotone nonexpansive mappings in ordered CAT(0) space with an application to integral equations. J. Inequal. Appl. 2018, 2018, 339. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Three Existence Results in the Fixed Point Theory. Axioms 2024, 13, 425. https://doi.org/10.3390/axioms13070425
Zaslavski AJ. Three Existence Results in the Fixed Point Theory. Axioms. 2024; 13(7):425. https://doi.org/10.3390/axioms13070425
Chicago/Turabian StyleZaslavski, Alexander J. 2024. "Three Existence Results in the Fixed Point Theory" Axioms 13, no. 7: 425. https://doi.org/10.3390/axioms13070425
APA StyleZaslavski, A. J. (2024). Three Existence Results in the Fixed Point Theory. Axioms, 13(7), 425. https://doi.org/10.3390/axioms13070425