Fixed Time Synchronization of Stochastic Takagi–Sugeno Fuzzy Recurrent Neural Networks with Distributed Delay under Feedback and Adaptive Controls
Abstract
:1. Introduction
- In this paper, the TS model is extended to recurrent neural networks, and synchronization properties are studied on this basis.
- For each theoretical result and the generalization of the model, numerical simulation is given to verify its validity.
- Two different kinds of control are used to study the synchronization property of the model, and the two kinds of control are compared.
1.1. Model Formulations
1.2. Assumption and Lemma
2. Fixed Time Synchronization Analysis
2.1. Feedback Control
2.2. Adaptive Control
3. Model Improvement and Extension
Modification of the Model Based on the Actual Situation
4. Numerical Simulation
4.1. Numerical Simulation 1
4.2. Numerical Simulation 2
4.3. Brief Summary
4.4. Numerical Simulation 3
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Xi, R.; Cai, T.; Lu, H.; Zhu, R.; Zheng, B.; Chen, H. Deep Neural Network with Data Cropping Algorithm for Absorptive Frequency-Selective Transmission Metasurface. Adv. Opt. Mater. 2022, 10, 2200178. [Google Scholar] [CrossRef]
- Li, Y.; Lam, J.; Fang, R. Mean square stability of linear stochastic neutral-type time-delay systems with multiple delays. Int. J. Robust Nonlinear Control 2019, 29, 451–472. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zhou, P.; Tan, Z.; Fan, H.; Zhang, Y.; Shen, L.; Ru, J.; Wang, Y.; Ye, L.; et al. A 148-nW Reconfigurable Event-Driven Intelligent Wake-Up System for AIoT Nodes Using an Asynchronous Pulse-Based Feature Extractor and a Convolutional Neural Network. IEEE J.-Solid-State Circuits 2021, 56, 3274–3288. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Z.; Xie, Y.; Chen, Q.; Gao, X.; Gui, W. Feature Reconstruction-Regression Network: A Light-Weight Deep Neural Network for Performance Monitoring in the Froth Flotation. IEEE Trans. Ind. Inform. 2021, 17, 8406–8417. [Google Scholar] [CrossRef]
- Saquetti, M.; Canofre, R.; Lorenzon, A.F.; Rossi, F.D.; Azambuja, J.R.; Cordeiro, W.; Luizelli, M.C. Toward In-Network Intelligence: Running Distributed Artificial Neural Networks in the Data Plane. IEEE Commun. Lett. 2021, 25, 3551–3555. [Google Scholar] [CrossRef]
- Forti, M.; Nistri, P. Global convergence of neural networks with discontinuous neuron activations. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 2003, 50, 1421–1435. [Google Scholar] [CrossRef]
- Liu, X.; Cao, J. Nonsmooth Finite-Time Synchronization of Switched Coupled Neural Networks. IEEE Trans. Cybern. 2003, 46, 2360–2371. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, D.; Calili, F.; Almeida, F.M. Recurrent Neural Networks for Estimating the State of Health of Lithium-Ion Batteries. Batteries 2024, 10, 111. [Google Scholar] [CrossRef]
- Pals, M.; Macke, H.J.; Barak, O. Trained recurrent neural networks develop phase-locked limit cycles in a working memory task. PLoS Comput. Biol. 2024, 20, e1011852. [Google Scholar] [CrossRef] [PubMed]
- González, S.; Peñalba, A.; Sumper, A. Distribution network planning method: Integration of a recurrent neural network model for the prediction of scenarios. Electr. Power Syst. Res. 2024, 229, 110125–110129. [Google Scholar] [CrossRef]
- Chen, G. Recurrent neural networks (RNNs) learn the constitutive law of viscoelasticity. Comput. Mech. 2021, 67, 1009–1019. [Google Scholar] [CrossRef]
- Feng, L.; Wu, Z.; Cao, J. Exponential stability for nonlinear hybrid stochastic systems with time varying delays of neutral type. Appl. Math. Lett. 2020, 107, 106468. [Google Scholar] [CrossRef]
- Pichamuthu, M.; An araman, R. The split step theta balanced numerical approximations of stochastic time varying Hopfield neural networks with distributed delays. Results Control Optim. 2023, 13, 100329. [Google Scholar]
- Li, B.; Cheng, X. Synchronization analysis of coupled fractional-order neural networks with time-varying delays. Math. Biosci. Eng. 2023, 20, 14846–14865. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Mao, X. Exponential stability and instability of stochastic neural networks. Stoch. Anal. Appl. 1996, 14, 165–185. [Google Scholar] [CrossRef]
- Li, B.; Cao, Y.; Li, Y. Almost automorphic solutions in distribution for octonion-valued stochastic recurrent neural networks with time-varying delays. Int. J. Syst. Sci. 2024, 55, 102–118. [Google Scholar] [CrossRef]
- Zeng, R.; Song, Q. Mean-square exponential input-to-state stability for stochastic neutral-type quaternion-valued neural networks via Itô’s formula of quaternion version. Chaos Solitons Fractals 2024, 178, 114341. [Google Scholar] [CrossRef]
- Carlos, G. Neural network based generation of a 1-dimensional stochastic field with turbulent velocity statistics. Phys. D Nonlinear Phenom. 2024, 458, 133997. [Google Scholar]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, 15, 116–132. [Google Scholar] [CrossRef]
- Wu, H.; Bian, Y.; Zhang, Y.; Guo, Y.; Xu, Q.; Chen, M. Multi-stable states and synchronicity of a cellular neural network with memristive activation function. Chaos Solitons Fractals 2023, 177, 114201. [Google Scholar] [CrossRef]
- Thazhathethil, R.; Abdulraheem, P.S. In-phase and anti-phase bursting dynamics and synchronisation scenario in neural network by varying coupling phase. J. Biol. Phys. 2023, 49, 345–361. [Google Scholar]
- Thomas, B.; Manuel, C.; Caroline, A.L. Revisiting the involvement of tau in complex neural network remodeling: Analysis of the extracellular neuronal activity in organotypic brain slice co-cultures. J. Neural Eng. 2022, 19, 066026. [Google Scholar]
- Chu, L. Neural network-based robot nonlinear output feedback control method. J. Comput. Methods Sci. Eng. 2023, 23, 1007–1019. [Google Scholar] [CrossRef]
- Shen, F.; Wang, X.; Pan, X. Event-triggered adaptive neural network control design for stochastic nonlinear systems with output constraint. Int. J. Adapt. Control Signal Process. 2023, 38, 342–358. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, C. Control the collective behaviors in a functional neural network. Chaos Solitons Fractals 2021, 152, 111361. [Google Scholar] [CrossRef]
- Phan, C.; Skrzypek, L.; You, Y. Dynamics and synchronization of complex neural networks with boundary coupling. Anal. Math. Phys. 2022, 12, 33. [Google Scholar] [CrossRef]
- Zuo, Z.; Tie, L. Distributed robust finite-time nonlinear consensus protocols for multiagent systems. Int. J. Syst. Sci. 2016, 47, 1366–1375. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F.; Tang, M. Stability and synchronization analysis of neural networks via Halanay-type inequality. J. Comput. Appl. Math. 2017, 319, 14–23. [Google Scholar] [CrossRef]
- Ren, H.; Peng, Z.; Gu, Y. Fixed-time synchronization of stochastic memristor-based neural networks with adaptive control. Neural Netw. 2020, 130, 165–175. [Google Scholar] [CrossRef]
- Wen, S.; Zeng, Z.; Huang, T. Exponential Adaptive Lag Synchronization of Memristive Neural Networks via Fuzzy Method and Applications in Pseudorandom Number Generators. IEEE Trans. Fuzzy Syst. 2013, 22, 1704–1713. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, J. Finite-Time Synchronization for Fuzzy Inertial Neural Networks by Maximum Value Approach. IEEE Trans. Fuzzy Syst. 2022, 30, 1436–1446. [Google Scholar] [CrossRef]
- Asghar, B.; Ehsan, R.; Naveed, K. Recurrent neural network for pitch control of variable-speed wind turbine. Sci. Prog. 2024, 107, 3682–3685. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Lu, J. New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay. Appl. Math. Comput. 2020, 389, 125616. [Google Scholar] [CrossRef]
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
i | ||||||||||
1 | 0.42 | 0.51 | 0.62 | 0.41 | 0.45 | 0.47 | 0 | 0.39 | ||
2 | 0.37 | 0.24 | 0 | 0.38 | 0.32 | 0 | 0.45 | 0 | ||
3 | 0 | 0.15 | 0.17 | 0 | 0.20 | 0.29 | 0.28 | 0.42 | ||
4 | 0.18 | 0 | 0.20 | 0.19 | 0 | 0.16 | 0.19 | 0.20 | ||
5 | 0.24 | 0 | 0.31 | 0 | 0.26 | 0 | 0.26 | 0 | ||
6 | 0.37 | 0.29 | 0 | 0.23 | 0 | 0.44 | 0.38 | 0.2 | ||
7 | 0 | 0.27 | 0.19 | 0.36 | 0.31 | 0.28 | 0 | 0.40 | ||
8 | 0.28 | 0.31 | 0.22 | 0.29 | 0.28 | 0.32 | 0.30 | 0.23 |
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
i | ||||||||||
1 | 0.60 | 0.52 | 0.62 | 0.65 | 0.60 | 0.59 | 0.70 | 0.49 | ||
2 | 0.60 | 0.47 | 0.63 | 0.56 | 0.62 | 0.66 | 0.49 | 0.66 | ||
3 | 0.50 | 0.63 | 0.51 | 0.69 | 0.64 | 0.55 | 0.51 | 0.65 | ||
4 | 0.60 | 0.68 | 0.64 | 0.57 | 0 | 0.57 | 0.64 | 0.71 | ||
5 | 0.70 | 0.60 | 0.60 | 0.53 | 0.65 | 0.63 | 0.66 | 0.59 | ||
6 | 0.70 | 0.70 | 0.58 | 0.46 | 0.57 | 0.60 | 0.52 | 0.65 | ||
7 | 0.50 | 0.54 | 0.57 | 0.65 | 0.55 | 0.60 | 0.63 | 0.55 | ||
8 | 0.60 | 0.66 | 0.65 | 0.69 | 0.60 | 0.60 | 0.65 | 0.60 |
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
i | ||||||||||
1 | 0.62 | 0.56 | 0 | 0.62 | 0.60 | 0.59 | 0.70 | 0.49 | ||
2 | 0 | 0.47 | 0.63 | 0 | 0.60 | 0.66 | 0.49 | 0.66 | ||
3 | 0.50 | 0.63 | 0.51 | 0.61 | 0.60 | 0.55 | 0.51 | 0.65 | ||
4 | 0.58 | 0.64 | 0.62 | 0.65 | 0.65 | 0 | 0.64 | 0.71 | ||
5 | 0.70 | 0 | 0.60 | 0.53 | 0.65 | 0.63 | 0.66 | 0.59 | ||
6 | 0.70 | 0.70 | 0.60 | 0.48 | 0.55 | 0.60 | 0.52 | 0.65 | ||
7 | 0.50 | 0.54 | 0.57 | 0.65 | 0.55 | 0.60 | 0 | 0.55 | ||
8 | 0.60 | 0.66 | 0.65 | 0.67 | 0.60 | 0.60 | 0.65 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Xu, X.; Liu, M. Fixed Time Synchronization of Stochastic Takagi–Sugeno Fuzzy Recurrent Neural Networks with Distributed Delay under Feedback and Adaptive Controls. Axioms 2024, 13, 391. https://doi.org/10.3390/axioms13060391
Niu Y, Xu X, Liu M. Fixed Time Synchronization of Stochastic Takagi–Sugeno Fuzzy Recurrent Neural Networks with Distributed Delay under Feedback and Adaptive Controls. Axioms. 2024; 13(6):391. https://doi.org/10.3390/axioms13060391
Chicago/Turabian StyleNiu, Yiran, Xiaofeng Xu, and Ming Liu. 2024. "Fixed Time Synchronization of Stochastic Takagi–Sugeno Fuzzy Recurrent Neural Networks with Distributed Delay under Feedback and Adaptive Controls" Axioms 13, no. 6: 391. https://doi.org/10.3390/axioms13060391
APA StyleNiu, Y., Xu, X., & Liu, M. (2024). Fixed Time Synchronization of Stochastic Takagi–Sugeno Fuzzy Recurrent Neural Networks with Distributed Delay under Feedback and Adaptive Controls. Axioms, 13(6), 391. https://doi.org/10.3390/axioms13060391