Perturbed Dirac Operators and Boundary Value Problems
Abstract
:1. Introduction
2. Preliminaries
3. Integral Operators Associated to Perturbed Dirac Operators
4. Riemann-Hilbert Boundary Value Problems for Perturbed Dirac Operators
5. The Clifford Hölder Spaces and a Non-Linear Riemann-Hilbert Type Problems
6. Error Estimation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, H.; Huang, J.; Leiterman, T. An adaptive fast solver for the modified Helmholtz equation in two dimensions. J. Comput. Phys. 2006, 211, 616–637. [Google Scholar] [CrossRef]
- Gürlebeck, K.; Sprössig, W. Quaternionic Analysis and Elliptic Boundary Value Problems; Birkhäuser: Basel, Switzerland, 1990. [Google Scholar]
- Gürlebeck, K.; Sprössig, W. Quaternionic and Clifford Calculus for Physicists and Engineers; Wiley Chichester: Chichester, UK, 1997. [Google Scholar]
- Gürlebeck, K.; Habetha, K.; Sprössig, W. Application of Holomorphic Functions in Two and Higher Dimensions; Birkhäuser: Basel, Switzerland, 2016. [Google Scholar]
- Kropinski, M.; Quaife, B. Fast integral equation methods for the modified Helmholtz equation. J. Comput. Phys. 2011, 230, 425–434. [Google Scholar] [CrossRef]
- Li, F.; Li, H.; Liu, Y. New Double Bifurcation of Nilpotent Focus. Int. J. Bifurc. Chaos 2021, 31, 2150053. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Liu, Y.; Yu, P. Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields. J. Differ. Equ. 2018, 265, 4965–4992. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Dang, P. Bifurcation analysis in a class of piecewise nonlinear systems with a nonsmooth heteroclinic loop. Int. J. Bifurc. Chaos 2021, 28, 1850026. [Google Scholar] [CrossRef]
- Mitrea, M. Boundary value problems and Hardy spaces associated to the Helmholtz equation in Lipschitz domains. J. Math. Anal. Appl. 1996, 202, 819–842. [Google Scholar] [CrossRef]
- Mitrea, M. Boundary value problems for Dirac operators and Maxwell’s equations in nonsmooth domains. Math. Methods Appl. Sci. 2002, 25, 1355–1369. [Google Scholar] [CrossRef]
- Sheng, Q.; Sun, H.W. Stability of a modified Peaceman-Rachford method for the paraxial Helmholtz equation on adaptive grids. J. Comput. Phys. 2016, 325, 259–271. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L.; Wang, G. Fractional Non-linear Regularity, Potential and Balayage. J. Geom. Anal. 2022, 32, 221. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Liu, S. Analyticity and existence of the Keller-Segel-Navier-Stokes equations in critical Besov spaces. Adv. Nonlinear Stud. 2018, 18, 517–535. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Sun, J. Existence and large time behavior to coupled chemotaxis-fluid equations in BesovCMorrey spaces. J. Differ. Equ. 2019, 266, 5867–5894. [Google Scholar] [CrossRef]
- Zepeda-Nú nez, L.; Demanet, L. The method of polarized traces for the 2D Helmholtz equation. J. Comput. Phys. 2016, 308, 347–388. [Google Scholar] [CrossRef]
- Blaya, R.A.; Reyes, J.B.; Brackx, F.; Schepper, H.D.; Sommen, F. Boundary value problems associated to a Hermitian Helmholtz equation. J. Math. Anal. Appl. 2012, 389, 1268–1279. [Google Scholar] [CrossRef]
- Reyes, J.B.; Blaya, R.A.; Rosa, M.A.P.d.; Schneider, B. Integral formulas of the Hilbert, Poincaré-Bertrand, Schwarz and Poisson type for the β-analytic function theory. J. Math. Anal. Appl. 2020, 492, 124493. [Google Scholar] [CrossRef]
- Peláez, M.A.H.; Blaya, R.A.; García, A.M.; María, J. Sigarreta Almira, Integral representation formulas for higher order Dirac equations. J. Math. Anal. Appl. 2022, 515, 126414. [Google Scholar] [CrossRef]
- Bernstein, S.; Legatiuk, D. Brownian Motion, Martingales and Itô Formula in Clifford Analysis. Adv. Appl. Clifford Algebras 2022, 32, 27. [Google Scholar] [CrossRef]
- Chandragiri, S.; Shishkina, O.A. Generalised Bernoulli Numbers and Polynomials in the Context of the Clifford Analysis. J. Sib. Fed. Univ. Math. Phys. 2018, 11, 127–136. [Google Scholar]
- Gürlebeck, K.; Zhang, Z. Generalized Integral representations for functions with values in C(V3,3). Chin. Ann. Math. Ser. B 2011, 32, 123–138. [Google Scholar] [CrossRef]
- Gu, L.; Du, J.; Cai, D. A kind of Riemann boundary value problems for pseudo-harmonic functions in Clifford analysis. Complex Var. Elliptic Equ. 2014, 59, 412–426. [Google Scholar] [CrossRef]
- Gu, L.; Fu, Z. Boundary value problems for modified Helmholtz equations and applications. Bound. Value Probl. 2015, 2015, 217. [Google Scholar] [CrossRef]
- Gu, L. The Clifford Hilbert transform and Riemann-Hilbert problems associated to the Dirac operator in Lebesgue spaces. Appl. Math. Comput. 2020, 364, 124686. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y.; Lin, R. Some integral representation formulas and Schwarz Lemmas related to perturbed Dirac operators. J. Appl. Anal. Comput. 2022, 12, 2475–2487. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Liu, Y. Nonlinear Riemann type problems associated to Hermitian Helmholtz equations. Complex Var. Elliptic Equ. 2023, 68, 763–775. [Google Scholar] [CrossRef]
- Kou, K.; Liu, W.; Xia, Y. Solve the linear quaternion-valued differential equations having multiple eigenvalues. J. Math. Phys. 2019, 60, 023510. [Google Scholar] [CrossRef]
- Xu, Z. Helmholtz equations and boundary value problems. Res. Notes Math. 1992, 262, 204–214. [Google Scholar]
- Zhang, Z. Some properties of operators in Clifford analysis. Complex Var. Elliptic Equ. 2007, 52, 455–473. [Google Scholar] [CrossRef]
- Delanghe, R. On the regular analytic functions with values in a Clifford algebra. Math. Ann. 1970, 185, 91–111. [Google Scholar] [CrossRef]
- Delanghe, R. On the singularities of functions with values in a Clifford algebra. Math. Ann. 1972, 196, 293–319. [Google Scholar] [CrossRef]
- Du, J.; Xu, N.; Zhang, Z. Boundary behavior of Cauchy-type integrals in Clifford analysis. Acta Math. Sci. Ser. B Engl. Ed. 2009, 29B, 210–224. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, Y. Perturbed Dirac Operators and Boundary Value Problems. Axioms 2024, 13, 363. https://doi.org/10.3390/axioms13060363
Liu X, Liu Y. Perturbed Dirac Operators and Boundary Value Problems. Axioms. 2024; 13(6):363. https://doi.org/10.3390/axioms13060363
Chicago/Turabian StyleLiu, Xiaopeng, and Yuanyuan Liu. 2024. "Perturbed Dirac Operators and Boundary Value Problems" Axioms 13, no. 6: 363. https://doi.org/10.3390/axioms13060363
APA StyleLiu, X., & Liu, Y. (2024). Perturbed Dirac Operators and Boundary Value Problems. Axioms, 13(6), 363. https://doi.org/10.3390/axioms13060363