Steady Solutions to Equations of Viscous Compressible Multifluids
Abstract
:1. Introduction
2. Statement of Boundary Value Problem and Formulation of Main Result
- (1)
- The density ρ satisfies the continuity Equation (1) in the sense that the integral identity
- (2)
3. Formulation of Approximate Boundary Value Problem and Proof of Its Strong Solvability
3.1. Formation of Operator
- (1)
- There exists a unique strong solution to the problem (15) of the class ;
- (2)
- The estimate
- (3)
- The equality holds;
- (4)
- If a.e. in , then a. e. in .
3.2. Problem with Parameter and First Estimate
3.3. Further Estimates
3.4. Solvability of Approximate Boundary Value Problem
4. Uniform Estimates of Solutions to Approximate Boundary Value Problem
5. Limit Everywhere Except Pressure
6. Limit in Pressure
6.1. Preliminary Constructions
6.2. Analysis of Commutative Relations
6.3. Relations for Effective Viscous Fluxes
6.4. Finalizing Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lions, P.L. Existence globale de solutions pour les équations de Navier–Stokes compressible isentropiques. C. R. Acad. Sci. Paris 1993, 316, 1335–1340. [Google Scholar]
- Lions, P.L. Compacité des solutions des équations de Navier–Stokes compressible isentropiques. C. R. Acad. Sci. Paris 1993, 317, 115–120. [Google Scholar]
- Lions, P.L. Mathematical Topics in Fluid Mechanics. Compressible Models; Oxford University Press: New York, NY, USA, 1998; Volume 2. [Google Scholar]
- Lions, P.L. Bornes sur la densité pour les équations de Navier–Stokes compressibles isentropiques avec conditions aux limites de Dirichlet. C. R. Acad. Sci. Paris 1999, 328, 659–662. [Google Scholar] [CrossRef]
- Feireisl, E.; Matusu–Necasova, S.; Petzeltova, H.; Straskraba, I. On the motion of a viscous compressible fluid driven by a time-periodic external force. Arch. Rat. Mech. Anal. 1999, 149, 69–96. [Google Scholar] [CrossRef]
- Feireisl, E. On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable. Comment. Math. Univ. Carol. 2001, 42, 83–98. [Google Scholar]
- Feireisl, E. Some recent results on the existence of global–in–time weak solutions to the Navier–Stokes equations of a general barotropic fluid. Math. Bohemica 2001, 2, 203–209. [Google Scholar] [CrossRef]
- Feireisl, E.; Novotny, A.; Petzeltova, H. On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 2001, 3, 358–392. [Google Scholar] [CrossRef]
- Feireisl, E. Dynamics of Viscous Compressible Fluids; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Nigmatulin, R.I. Dynamics of Multiphase Media; Hemisphere: New York, NY, USA, 1990; Volume 1–2. [Google Scholar]
- Rajagopal, K.L.; Tao, L. Mechanics of Mixtures; World Scientific Publishing: Hackensack, NJ, USA, 1995. [Google Scholar]
- Mamontov, A.E.; Prokudin, D.A. Viscous compressible homogeneous multi–fluids with multiple velocities: Barotropic existence theory. Sib. Electron. Math. Rep. 2017, 14, 388–397. [Google Scholar]
- Frehse, J.; Goj, S.; Malek, J. On a Stokes–like system for mixtures of fluids. SIAM J. Math. Anal. 2005, 36, 1259–1281. [Google Scholar] [CrossRef]
- Frehse, J.; Goj, S.; Malek, J. A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum. Appl. Math. 2005, 50, 527–541. [Google Scholar] [CrossRef]
- Frehse, J.; Weigant, W. On quasi–stationary models of mixtures of compressible fluids. Appl. Math. 2008, 53, 319–345. [Google Scholar] [CrossRef]
- Mamontov, A.E.; Prokudin, D.A. Solubility of a stationary boundary–value problem for the equations of motion of a one–temperature mixture of viscous compressible heat–conducting fluids. Izv. Math. 2014, 78, 554–579. [Google Scholar] [CrossRef]
- Mamontov, A.E.; Prokudin, D.A. Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids. Sib. Electron. Math. Rep. 2016, 13, 664–693. [Google Scholar]
- Mamontov, A.E.; Prokudin, D.A. Global unique solvability of the initial-boundary value problem for the equations of one–dimensional polytropic flows of viscous compressible multifluids. J. Math. Fluid Mech. 2019, 21, 9. [Google Scholar] [CrossRef]
- Mamontov, A.E.; Prokudin, D.A. Solubility of unsteady equations of the three-dimensional motion of two-component viscous compressible heat–conducting fluids. Izv. Math. 2021, 85, 755–812. [Google Scholar] [CrossRef]
- Denisova, I.V.; Solonnikov, V.A. Global solvability of a problem governing the motion of two incompressible capillary fluids in a container. J. Math. Sci. 2012, 185, 20–52. [Google Scholar] [CrossRef]
- Zatorska, E. On the flow of chemically reacting gaseous mixture. J. Differ. Equ. 2012, 253, 3471–3500. [Google Scholar] [CrossRef]
- Bresch, D.; Giovangigli, V.; Zatorska, E. Two–velocity hydrodynamics in fluid mechanics: Part I. Well posedness for zero Mach number systems. J. Math. Pures Appl. 2015, 104, 762–800. [Google Scholar] [CrossRef]
- Bresch, D.; Desjardins, B.; Zatorska, E. Two–velocity hydrodynamics in fluid mechanics: Part II. Existence of global k–entropy solutions to the compressible Navier–Stokes systems with degenerate viscosities. J. Math. Pures Appl. 2015, 104, 801–836. [Google Scholar] [CrossRef]
- Giovangigli, V.; Pokorny, M.; Zatorska, E. On the steady flow of reactive gaseous mixture. Analysis 2015, 35, 319–341. [Google Scholar] [CrossRef]
- Mucha, P.B.; Pokorny, M.; Zatorska, E. Heat–conducting, compressible mixtures with multicomponent diffusion: Construction of a weak solution. SIAM J. Math. Anal. 2015, 47, 3747–3797. [Google Scholar] [CrossRef]
- Feireisl, E. On weak solutions to a diffuse interface model of a binary mixture of compressible fluids. Discret. Contin. Dyn. Syst. Ser. S. 2016, 9, 173–183. [Google Scholar] [CrossRef]
- Chebotarev, A.Y. Inhomogeneous boundary–value problem of radiation heat transfer for a multicomponent medium. Dal’nevostochnyi Matematicheskii Zhurnal 2021, 20, 113–121. [Google Scholar] [CrossRef]
- Maz’ja, V.G. Sobolev Spaces; Springer: Berlin, Germany, 1985. [Google Scholar]
- Nikol’skii, S.M. Approximation of Functions of Several Variables and Imbedding Theorems; Springer: Berlin, Germany, 1975. [Google Scholar]
- DiPerna, R.J.; Lions, P.L. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 1989, 98, 511–547. [Google Scholar] [CrossRef]
- Feireisl, E.; Novotny, A. Singular Limits in Thermodynamics of Viscous Fluids; Birkhauser: Basel, Switzerland, 2009. [Google Scholar]
- Novotny, A.; Straskraba, I. Introduction to the Mathematical Theory of Compressible Flow; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order; Springer: Berlin, Germany, 2001. [Google Scholar]
- Mucha, P.; Pokorny, M. Weak solutions to equations of steady compressible heat conducting fluids. Math. Model. Methods Appl. Sci. 2010, 20, 785–813. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A. The Boundary Value Problems of Mathematical Physics; Springer: New York, NY, USA, 1985. [Google Scholar]
- Solonnikov, V.A. On general boundary value problems for systems which are elliptic in the sense of A. Douglis and L. Nirenberg. II. Proc. Steklov Inst. Math. 1968, 92, 269–339. [Google Scholar]
- Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math. 1964, 17, 35–92. [Google Scholar] [CrossRef]
- Coifman, R.; Meyer, Y. On commutators of singular integrals. Trans. Am. Math. Soc. 1975, 212, 315–331. [Google Scholar] [CrossRef]
- Tartar, L. Compensated compactness and applications to partial differential equations. Nonlinear Anal. Mech. 1979, 39, 136–212. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamontov, A.; Prokudin, D. Steady Solutions to Equations of Viscous Compressible Multifluids. Axioms 2024, 13, 362. https://doi.org/10.3390/axioms13060362
Mamontov A, Prokudin D. Steady Solutions to Equations of Viscous Compressible Multifluids. Axioms. 2024; 13(6):362. https://doi.org/10.3390/axioms13060362
Chicago/Turabian StyleMamontov, Alexander, and Dmitriy Prokudin. 2024. "Steady Solutions to Equations of Viscous Compressible Multifluids" Axioms 13, no. 6: 362. https://doi.org/10.3390/axioms13060362
APA StyleMamontov, A., & Prokudin, D. (2024). Steady Solutions to Equations of Viscous Compressible Multifluids. Axioms, 13(6), 362. https://doi.org/10.3390/axioms13060362