Finding Set Extreme 3-Uniform Hypergraphs Cardinality through Second-Order Signatures
Abstract
:1. Introduction
2. Definitions
- (1)
- either or the partial order relation between p and q is not established;
- (2)
- .
3. Results
3.1. An Approach to Calculating the Cardinality of a Set of Extremal 3-Uniform Hypergraphs through “Base” Counting
Algorithm 1 CalcBases: Calculating the power of a set of bases. | |
Require: | ▹k is dimension of ; |
Require: | ▹n is number of vertices ; |
Require: | ▹B —a set of elements from , ordered in ascending order in lexicographical order, in which for each pair of elements the partial order relation is not defined; |
Require: | ▹p—sequence number of the last checked element from ; |
Require: | ▹—accumulated chain length; |
Require: | ▹—a null array to store the number of bases consisting of the corresponding number of elements. |
for ; ; i++ do if IsBase(B, then ++ CalcBases(k, n, , , GroupBase(B, )) end if end for |
3.2. Counting Included First-Order Signatures
Algorithm 2 CalcSignatures2: Counting the power of the set of second-order signatures given by the first coordinate. |
MaxBit(s) for ; ; j++ do if IsSinS(, j) then end if end for return res |
Algorithm 3 MaxBit: finding the highest digit of a number. |
while (a >> 1) > 0 do >> 1 end while return 1 << p |
Algorithm 4 IsSinS: checking relation of inclusion between signatures. |
if
then return 0 end if if then return 1 end if while () && do if a & then end if if b & then end if >> 1 end while if then return 1 else return 0 end if |
- —the maximal signature is equal to :
- —the maximal signature is equal to :
- —the maximal signature is equal to :
- —the maximal signature is equal to :
- It is necessary to implement a structure for storing previously obtained values, for signatures that are smaller than the one under study by two binary orders.
- For a new signature, only a quarter of the time it is necessary to look for the inclusion of other signatures.
Algorithm 5 CalcSignatures2M: Modified power calculation of the set of second-order signatures generated by a specified signature. |
if then return
end if >> 1 >> 2 if then return end if for ; ; j++ do if IsSinS(, j) > 0 then end if end for return res |
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UH | Uniform hypergraph |
EUH | Extreme uniform hypergraph |
RAM | Random access memory |
References
- Berge, C. Hypergraphs Generalizing Bipartite Graphs; North-Holland: Amsterdam, The Netherlands, 1989; pp. 507–509. [Google Scholar]
- Berge, C. Hypergraphs; North-Holland: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Ould-Khaoua, M. Hypergraph-Based Interconnection Networks for Large Multicomputers; University of Glasgow: Glasgow, UK, 1994. [Google Scholar]
- Yang, M.; Yang, Y. A Hypergraph Approach to Linear Network Coding in Multicast Networks. IEEE Trans. Parallel Distrib. Syst. 2010, 21, 968–982. [Google Scholar] [CrossRef]
- Mikov, A.I.; Mikov, A.A. Properties of Geometric Hypergraphs of Wireless Computer Networks. Informatiz. Svyaz 2020, 4, 60–66. [Google Scholar]
- Popkov, V.K. On Modeling City Traffic Systems with Hypernetworks. Autom. Remote Control 2011, 72, 1309–1318. [Google Scholar] [CrossRef]
- Zi-Ke, Z.; Chuang, L. A hypergraph model of social tagging networks. J. Stat. Mech. Theory Exp. 2010, 2010, 10005. [Google Scholar]
- Wang, F.; Wang, X.; Shao, B.; Li, T.; Ogihara, M. Tag Integrated Multi-Label Music Style Classification with Hypergraph. ISMIR 2009, 10, 363–368. [Google Scholar]
- Pliakos, K.; Kotropoulos, C. Personalized music tagging using ranking on hypergraphs. In Proceedings of the 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), Athens, Greece, 21–23 May 2014; pp. 628–631. [Google Scholar]
- Mokrozub, V.G.; Nemtinov, V.A.; Mordvin, A.S.; Ilyasov, A.A. Application of n-oriented Hypergraphs and Relational Databases for Structural and Parametric Synthesis of Technical Systems. Prikl. Inform. 2010, 4, 115–122. [Google Scholar]
- Feng, Y.; You, H.; Zhang, Z.; Ji, R.; Gao, Y. Hypergraph Neural Networks. Proc. Aaai Conf. Artif. Intell. 2019, 33, 3558–3565. [Google Scholar] [CrossRef]
- Yi, J.; Park, J. Hypergraph Convolutional Recurrent Neural Network. In Proceedings of the KDD ’20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 6–10 July 2020; pp. 3366–3376. [Google Scholar]
- Wang, F.; Pena-Pena, K.; Qian, W.; Arce, G.R. T-HyperGNNs: Hypergraph Neural Networks via Tensor Representations. In IEEE Transactions on Neural Networks and Learning Systems; IEEE: Piscataway, NJ, USA, 2024; pp. 1–15. [Google Scholar]
- Egorova, E.K.; Mokryakov, A.V.; Suvorova, A.A.; Tsurkov, V.I. Algorithm of Multidimensional Data Transmission Using Extremal Uniform Hypergraphs. J. Comput. Syst. Sci. Int. 2021, 60, 69–74. [Google Scholar] [CrossRef]
- Kamenev, A.R.; Irbitskii, I.S.; Pashkovskaya, E.A. Key search methods for encryption algorithms on graphs. In Proceedings of the Abstracts of Presentations at the XLVIII International Youth Scientific Conference Gagarin Readings (Pero, Moscow, 2022), Moscow, Russia, 12–15 April 2022; p. 252. (In Russian). [Google Scholar]
- Lezhinskii, M.V. The conception of topologically oriented hash-functions. In Proceedings of the Abstracts of Presentations at the XLVIII International Youth Scientific Conference Gagarin Readings (Pero, Moscow, 2022), Moscow, Russia, 12–15 April 2022; pp. 260–261. (In Russian). [Google Scholar]
- Suvorova, A.A.; Beretskii, I.S. A stream encryption algorithm on extremal k-uniform hypergraphs. In Proceedings of the Abstracts of Presentations at the International Youth Scientific Conference Gagarin Readings-2020 (MAI, Moscow, 2020), Moscow, Russia, 14–17 April 2020; pp. 510–511. (In Russian). [Google Scholar]
- Oliver, P.; Zhang, E.; Zhang, Y. Scalable Hypergraph Visualization. IEEE Trans. Vis. Comput. Graph. 2024, 30, 595–605. [Google Scholar] [CrossRef]
- Br städt, A.; Chepoi, V.D.; Dragan, F.F. The algorithmic use of hypertree structure and maximum neighbourhood orderings. Discret. Appl. Math. 1998, 82, 43–77. [Google Scholar] [CrossRef]
- Bobu, A.V.; Kupriyanov, A.E.; Raigorodskii, A.M. On the Number of Edges of a Uniform Hypergraph with a Range of Allowed Intersections. Probl. Inf. Transm. 2017, 53, 319–342. [Google Scholar] [CrossRef]
- Dinur, I.; Regev, O.; Smyth, C. The Hardness of 3-Uniform Hypergraph Coloring. Combinatorica 2005, 25, 519–535. [Google Scholar] [CrossRef]
- Cherkashin, D.; Kozic, J. A Note on Random Greedy Coloring of Uniform Hypergraphs. Random Struct. Algorithms 2015, 47, 407–413. [Google Scholar] [CrossRef]
- Egorova, E.K.; Mokryakov, A.V.; Yesenkov, A.S. Operations Over k-Homogeneous Hypergraphs and their Vectors of the Degrees of the Vertices. J. Comput. Syst. Sci. Int. 2020, 59, 381–386. [Google Scholar] [CrossRef]
- Davies, S.; Maenhaut, B.; Mitchell, J. I Perfect 1-factorisations of complete k-uniform hypergraphs. Australas. J. Comb. 2023, 85, 35–48. [Google Scholar]
- Ghosh, D.; Győri, E.; Nagy-György, J.; Paulos, A.; Xiao, C.; Zamora, O.I. Book free 3-uniform hypergraphs. Discret. Math. 2023, 347, 113828. [Google Scholar] [CrossRef]
- Aleksandrov, P.S. Combinatorial Topology; Gostekhteorizdat: Leningrad, Soviet Union, 1947; 660p. (In Russian) [Google Scholar]
- Raigorodskii, A.M.; Cherkashin, D.D. Extremal Problems in Hypergraph Colourings. Russ. Math. Surv. 2020, 75, 146. [Google Scholar] [CrossRef]
- Coregliano, L.N.; Razborov, A.A. Semantic limits of dense combinatorial objects. Russ. Math. Surv. 2020, 75, 627–723. [Google Scholar] [CrossRef]
- Boros, E.; Caro, Y.; Füredi, Z.; Yuster, R. Covering Non-uniform Hypergraphs. J. Comb. Theory Ser. 2001, 82, 270–284. [Google Scholar] [CrossRef]
- Balobanov, A.E.; Shabanov, D.A. On the Number of Independent Sets in Simple Hypergraphs. Math. Notes 2018, 103, 33–41. [Google Scholar] [CrossRef]
- Shirdel, G.H.; Vaez-Zadeh, B. Finding the shortest path for a Hypergraph. Discret. Math. Algorithms Appl. 2022, 14, 2150120. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, Q.; Ren, W.; Swami, A.; Ramanathan, R.; Bar-Noy, A. Dynamic Shortest Path Algorithms for Hypergraphs. IEEE/Acm Trans. Netw. 2015, 23, 1805–1817. [Google Scholar] [CrossRef]
- Nguyen, S.; Pretolani, D.; Markenzon, L. On some path problems on oriented hypergraphs. Inform. ThéOrique Appl. 1998, 32, 1–20. [Google Scholar] [CrossRef]
- Bondarenko, V.A.; Nikolaev, A.V. A Class of Hypergraphs and Vertices of Cut Polytope Relaxations. Dokl. Math. 2012, 85, 46–47. [Google Scholar] [CrossRef]
- Pogrebnoi, V.K.; Pogrebnoi, A.V. Investigation of the polynomiality of the method for calculating the integral descriptor of the graph structure. Izv. Tomsk. Politekh. Univ. 2013, 323, 146–151. [Google Scholar]
- Mokryakov, A.V.; Tsurkov, V.I. Reconstructing 2-Complexes by a Nonnegative Integer-Valued Vector. Autom. Remote Control 2011, 72, 2541–2552. [Google Scholar] [CrossRef]
- Kostyanoi, D.S.; Mokryakov, A.V.; Tsurkov, V.I. Hypergraph Recovery Algorithms from a Given Vector of Vertex Degrees. J. Comput. Syst. Sci. Int. 2014, 53, 511–516. [Google Scholar] [CrossRef]
- Mironov, A.A. Geometry of the points in the space Rn that can be realized in a graph. Usp. Mat. Nauk 1977, 32, 232–233. [Google Scholar]
- Goltsova, T.Y.; Egorova, E.K.; Mokryakov, A.V.; Tsurkov, V.I. Signatures of Extremal 2-Unifrom Hypergraphs. J. Comput. Syst. Sci. Int. 2021, 60, 904–912. [Google Scholar] [CrossRef]
- Denisov, I.O.; Shabanov, D.A. On the Concentration of the Independence Numbers of Random Hypergraphs. Diskretn. Mat. 2021, 33, 32–46. [Google Scholar] [CrossRef]
- Zakharov, P.A.; Shabanov, D.A. On the Maximal Cut in a Random Hypergraph. Dokl. Math. 2021, 104, 336–339. [Google Scholar] [CrossRef]
- Pólya, G. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math. 1937, 68, 145–254. [Google Scholar] [CrossRef]
- Gilbert, E.N. Enumeration of Labelled Graphs. Canad. J. Math. 1956, 8, 405–411. [Google Scholar] [CrossRef]
- Nijenhuis, A.; Wilf, H.S. The Enumeration of Connected Graphs and Linked Diagrams. J. Comb. Theory. Ser. A. 1979, 27, 356–359. [Google Scholar] [CrossRef]
- Harary, F.; Palmer, E.M. Graphical Enumeration; Elsevier: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Mironov, A.A.; Tsurkov, V.I. Network Models with Fixed Parameters at the Communication Nodes. 1. J. Comput. Syst. Sci. Int. 1995, 33, 107–116. [Google Scholar]
- Mironov, A.A.; Tsurkov, V.I. Network Models with Fixed Parameters at the Communication Nodes. 2. J. Comput. Syst. Sci. Int. 1994, 32, 1–11. [Google Scholar]
- Prüfer, H. Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 1918, 27, 742–744. [Google Scholar]
- Beretskii, I.S.; Egorova, E.K.; Mokryakov, A.V.; Tsurkov, V.I. Combination of Bases and an Evaluation of the Set of Extremal 3-Uniform Hypergraphs. J. Comput. Syst. Sci. Int. 2023, 62, 815–825. [Google Scholar] [CrossRef]
- Alon, N. Transversal numbers of uniform hypergraphs. Graphs Comb. 1990, 6, 1–4. [Google Scholar] [CrossRef]
- Qian, J. Enumeration of unlabeled uniform hypergraphs. Discret. Math. 2014, 326, 66–74. [Google Scholar] [CrossRef]
- Mironov, A.A. Minimax under Transportation Constraints; Kluwer Academic Publishers: London, UK, 1999; 309p. [Google Scholar]
- Mironov, A.A. Uniform generalized graphs. Dokl. Akad. Nauk. 1996, 351, 465–468. [Google Scholar]
- Mokryakov, A.V. Hypergraphs as Algebraic Structures. J. Comput. Syst. Sci. Int. 2011, 50, 734–740. [Google Scholar] [CrossRef]
- Mironov, A.A.; Mokryakov, A.V.; Sokolov, A.A. About Realization of Integer Non-Negative Numbers Tuple into 2-Dimensional Complexes. Appl. Comput. Math. 2007, 6, 58–68. [Google Scholar]
- Goltsova, T.Y.; Egorova, E.K.; Leonov, V.Y.; Mokryakov, A.V. First and Second Order Signatures of Extreme Uniform Hypergraphs and Their Relationship with Vectors of the Vertex Degrees. J. Comput. Syst. Sci. Int. 2023, 62, 663–676. [Google Scholar] [CrossRef]
- Egorova, E.; Mokryakov, A.; Tsurkov, V. Algebra of Signatures for Extreme 2-Uniform Hypergraphs. Axioms 2023, 12, 1123. [Google Scholar] [CrossRef]
n | Time, c. | ||
---|---|---|---|
3 | 2 | <0.001 | |
4 | 5 | <0.001 | |
5 | 16 | <0.001 | |
6 | 66 | 0.002 | 2 |
7 | 352 | 0.004 | 2 |
8 | 2431 | 0.011 | 2.75 |
9 | 21,760 | 0.021 | 1.9 |
10 | 252,586 | 0.045 | 2.14 |
11 | 3,803,648 | 0.062 | 1.4 |
12 | 74,327,145 | 0.181 | 2.9 |
13 | 1,885,102,080 | 3.6 | 19.9 |
14 | 62,062,015,500 | 118.5 | 32.9 |
15 | 2,652,584,509,440 | 5300 | 44.7 |
16 | 147,198,472,495,020 | 304,636 | 57.5 |
Count | Count | ||
---|---|---|---|
0 | 1 | 16 | 1 |
1 | 1 | 17 | 2 |
2 | 1 | 18 | 3 |
3 | 2 | 19 | 5 |
4 | 1 | 20 | 4 |
5 | 2 | 21 | 8 |
6 | 3 | 22 | 11 |
7 | 5 | 23 | 16 |
8 | 1 | 24 | 5 |
9 | 2 | 25 | 11 |
10 | 3 | 26 | 17 |
11 | 5 | 27 | 27 |
12 | 4 | 28 | 21 |
13 | 8 | 29 | 39 |
14 | 11 | 30 | 50 |
15 | 16 | 31 | 66 |
BIN() | BIN() | ||
---|---|---|---|
8 | 01000 | 16 | 10000 |
9 | 01001 | 17 | 10001 |
10 | 01010 | 18 | 10010 |
11 | 01011 | 19 | 10011 |
12 | 01100 | 20 | 10100 |
13 | 01101 | 21 | 10101 |
14 | 01110 | 22 | 10110 |
15 | 01111 | 23 | 10111 |
24 | ||
25 | ||
26 | ||
27 | ||
28 | ||
29 | ||
30 | ||
31 |
n | Time, c. | Parallel Time, c. | ||
---|---|---|---|---|
3 | 3 | 2 | <0.001 | <0.001 |
4 | 7 | 5 | <0.001 | <0.001 |
5 | 15 | 16 | <0.001 | <0.001 |
6 | 31 | 66 | <0.001 | <0.001 |
7 | 63 | 352 | <0.001 | <0.001 |
8 | 127 | 2431 | <0.001 | <0.001 |
9 | 255 | 21,760 | 0.001 | <0.001 |
10 | 511 | 252,586 | 0.002 | 0.001 |
11 | 1023 | 3,803,648 | 0.003 | 0.002 |
12 | 2,047 | 74,327,145 | 0.008 | 0.003 |
13 | 4095 | 1,885,102,080 | 0.028 | 0.006 |
14 | 8191 | 62,062,015,500 | 0.101 | 0.015 |
15 | 16,383 | 2,652,584,509,440 | 0.428 | 0.047 |
16 | 32,767 | 147,198,472,495,020 | 1.729 | 0.171 |
17 | 65,535 | 10,606,175,914,819,584 | 6.742 | 0.725 |
18 | 131,071 | 992,340,657,705,109,416 | 27.981 | 2.994 |
n | Time, c. | |
---|---|---|
4 | 2 | <0.001 |
5 | 6 | <0.001 |
6 | 32 | <0.001 |
7 | 352 | <0.001 |
8 | 9304 | 0.002 |
9 | 683,464 | 0.04 |
10 | 161,960,220 | 6 |
11 | 143,145,033,004 | 3827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egorova, E.; Leonov, V.; Mokryakov, A.; Tsurkov, V. Finding Set Extreme 3-Uniform Hypergraphs Cardinality through Second-Order Signatures. Axioms 2024, 13, 364. https://doi.org/10.3390/axioms13060364
Egorova E, Leonov V, Mokryakov A, Tsurkov V. Finding Set Extreme 3-Uniform Hypergraphs Cardinality through Second-Order Signatures. Axioms. 2024; 13(6):364. https://doi.org/10.3390/axioms13060364
Chicago/Turabian StyleEgorova, Evgeniya, Vladislav Leonov, Aleksey Mokryakov, and Vladimir Tsurkov. 2024. "Finding Set Extreme 3-Uniform Hypergraphs Cardinality through Second-Order Signatures" Axioms 13, no. 6: 364. https://doi.org/10.3390/axioms13060364
APA StyleEgorova, E., Leonov, V., Mokryakov, A., & Tsurkov, V. (2024). Finding Set Extreme 3-Uniform Hypergraphs Cardinality through Second-Order Signatures. Axioms, 13(6), 364. https://doi.org/10.3390/axioms13060364