High Perturbations of a Fractional Kirchhoff Equation with Critical Nonlinearities
Abstract
:1. Introduction and Main Results
2. Preliminaries
3. A Compactness Result for
4. Existence and Nonexistence Results
- (1)
- There exist such that for all with .
- (2)
- There exists such that and .
- (1)
- for all .
- (2)
- There exists such that and .
- (1)
- , ;
- (2)
- There exist positive constants such that for all with ;
- (3)
- There exist a subspace with such that for some ;
- (4)
- I satisfies for any .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiscella, A.; Bisci, G.; Servadei, R. Bifurcation and multiplicity results for critical nonlocal fractional Laplacian problems. Bull. Sci. Math. 2016, 140, 14–35. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 2012, 389, 887–898. [Google Scholar] [CrossRef]
- Jin, H.; Liu, W.; Zhang, J. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete Contin. Dyn. Syst. S 2018, 11, 533–545. [Google Scholar] [CrossRef]
- Brézis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 1983, 36, 437–477. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 2015, 367, 67–102. [Google Scholar] [CrossRef]
- Guo, Y.; Li, B.; Pistoia, A.; Yan, S. The fractional Brezis-Nirenberg problems on lower dimensions. J. Differ. Equ. 2021, 286, 284–331. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. A Brezis-Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 2013, 12, 2445–2464. [Google Scholar] [CrossRef]
- Servadei, R. A critical fractional Laplace equation in the resonant case. Topol. Methods Nonlinear Anal. 2014, 43, 251–267. [Google Scholar] [CrossRef]
- Figueiredo, G.; Bisci, G.; Servadei, R. The effect of the domain topology on the number of solutions of fractional Laplace problems. Calc. Var. Partial Differ. Equ. 2018, 57, 103. [Google Scholar] [CrossRef]
- Mukherjee, T.; Sreenadh, K. Fractional Choquard equation with critical nonlinearities. Nonlinear Differ. Equ. Appl. 2017, 24, 63. [Google Scholar] [CrossRef]
- Fu, P.; Xia, A. Existence and multiplicity results for a critical superlinear fractional Ambrosetti–Prodi type problem. Commun. Nonlinear Sci. Numer. Simul. 2023, 120, 107174. [Google Scholar] [CrossRef]
- Fiscella, A.; Bisci, G.; Servadei, R. Multiplicity results for fractional Laplace problems with critical growth. Manuscripta Math. 2018, 155, 369–388. [Google Scholar] [CrossRef]
- Servadei, R. The Yamabe equation in a non-local setting. Adv. Nonlinear Anal. 2013, 2, 235–270. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Fractional Laplacian equations with critical Sobolev exponent. Rev. Mat. Complut. 2015, 28, 655–676. [Google Scholar] [CrossRef]
- Li, P.; Sun, H. Existence results and bifurcation for nonlocal fractional problems with critical Sobolev exponent. Comput. Math. Appl. 2019, 78, 1720–1731. [Google Scholar] [CrossRef]
- Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Autuori, G.; Fiscella, A.; Pucci, P. Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 2015, 125, 699–714. [Google Scholar] [CrossRef]
- Jiao, C.; Pei, R. Existence of multiple solutions for fractional p-Kirchhoff equation with critical Sobolev exponent. Mediterr. J. Math. 2023, 20, 206. [Google Scholar] [CrossRef]
- Su, Y.; Chen, H. Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent. Comput. Math. Appl. 2019, 78, 2063–2082. [Google Scholar] [CrossRef]
- Xiang, M.; Rǎdulescu, V.; Zhang, B. Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc. Var. Partial Differ. Equ. 2019, 58, 57. [Google Scholar]
- Wang, Y.; Suo, H.; Lei, C. Multiple positive solutions for a nonlocal problem involving critical exponent. Electron. J. Differ. Equ. 2017, 2017, 1–11. [Google Scholar]
- Yin, G.; Liu, J. Existence and multiplicity of nontrivial solutions for a nonlocal problem. Bound. Value Probl. 2015, 2015, 26. [Google Scholar] [CrossRef]
- Qian, X. Multiplicity of positive solutions for a class of nonlocal problem involving critical exponent. Electron. J. Qual. Theory Differ. Equ. 2021, 57, 1–14. [Google Scholar] [CrossRef]
- Qian, X. Positive solutions for a nonlocal problem with critical Sobolev exponent in higher dimensions. J. Appl. Anal. Comput. 2022, 12, 2033–2042. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. The third solution for a Kirchhoff-type problem with a critical exponent. J. Math. Anal. Appl. 2023, 526, 127174. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Y. High perturbations of a new Kirchhoff problem involving the p-Laplace operator. Bound. Value Probl. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Chu, C.; Xie, Y.; Zhou, D. Existence and multiplicity of solutions for a new p(x)-Kirchhoff problem with variable exponents. Open Math. 2023, 21, 20220520. [Google Scholar] [CrossRef]
- Hamdani, M.; Harrabi, A.; Mtirif, F.; Repoš, D. Existence and multiplicity results for a new p(x)-Kirchhoff problem. Nonlinear Anal. 2020, 190, 111598. [Google Scholar] [CrossRef]
- Zhang, B.; Ge, B.; Cao, X. Multiple solutions for a class of new p(x)-Kirchhoff problem without the Ambrosetti-Rabinowitz conditions. Mathematics 2020, 8, 2068. [Google Scholar] [CrossRef]
- Bai, S.; Song, Y. Some existence results for critical nonlocal Choquard equation on the Heisenberg group. Commun. Nonlinear Sci. Numer. Simul. 2023, 127, 107522. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, D. A new Kirchhoff-Schrödinger-Poisson type system on the Heisenberg group. Differ. Integral Equ. 2021, 34, 621–639. [Google Scholar] [CrossRef]
- Liu, Z.; Tao, L.; Zhang, D.; Liang, S.; Song, Y. Critical nonlocal Schrödinger-Poisson system on the Heisenberg group. Adv. Nonlinear Anal. 2022, 11, 482–502. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Z.; Ouyang, Z. Multiplicity results for the Kirchhoff type equations with critical growth. Appl. Math. Lett. 2017, 63, 118–123. [Google Scholar] [CrossRef]
- Fiscella, A. A fractional Kirchhoff problem involving a singular term and a critical nonlinearity. Adv. Nonlinear Anal. 2019, 8, 645–660. [Google Scholar] [CrossRef]
- Fiscella, A.; Mishra, P. The Nehari manifold for fractional Kirchhoff problems involving singular and critical terms. Nonlinear Anal. 2019, 186, 6–32. [Google Scholar] [CrossRef]
- Palatucci, G.; Pisante, A. Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial. Differ. Equ. 2014, 50, 799–829. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Repovš, D. Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials. Nonlinear Anal. 2016, 142, 48–68. [Google Scholar] [CrossRef]
- Brézis, H.; Lieb, E. A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 1983, 88, 486–490. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef]
- Yu, S.; Chen, J. Asymptotic behavior of the unique solution for a fractional Kirchhoff problem with singularity. AIMS Math. 2021, 6, 7187–7198. [Google Scholar] [CrossRef]
- Bartolo, P.; Benci, V.; Fortunato, D. Abstract critical point theorems and applications to some nonlinear problems with “strong" resonance at infinity. Nonlinear Anal. TMA 1983, 7, 981–1012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Huang, L.; Chen, J. High Perturbations of a Fractional Kirchhoff Equation with Critical Nonlinearities. Axioms 2024, 13, 337. https://doi.org/10.3390/axioms13050337
Yu S, Huang L, Chen J. High Perturbations of a Fractional Kirchhoff Equation with Critical Nonlinearities. Axioms. 2024; 13(5):337. https://doi.org/10.3390/axioms13050337
Chicago/Turabian StyleYu, Shengbin, Lingmei Huang, and Jiangbin Chen. 2024. "High Perturbations of a Fractional Kirchhoff Equation with Critical Nonlinearities" Axioms 13, no. 5: 337. https://doi.org/10.3390/axioms13050337
APA StyleYu, S., Huang, L., & Chen, J. (2024). High Perturbations of a Fractional Kirchhoff Equation with Critical Nonlinearities. Axioms, 13(5), 337. https://doi.org/10.3390/axioms13050337