New Summation and Integral Representations for 2-Variable (p,q)-Hermite Polynomials
Abstract
:1. Introduction
2. Preliminaries
3. New Properties of 2-Variable -Hermite Polynomials
4. New Summation Models for and -Derivatives
- (1)
- If (), then
- (2)
- If (), then
5. Recommendations for Future Research
6. Conclusions
- -Diffusion equation (see Equation (20)):
- -Differential equation (see Theorem 1):The subsequent -differential equation for -Hermite polynomials of 2-variables holds true:
- Integral representations (see Theorems 2 and 3):
- (i)
- The definite -integral of with regard to x is as follows:
- (ii)
- The definite -integral of with respect to y is as follows:
- Summation representations (see Theorem 4):The summation models for -Hermite polynomials of 2-variables are given below:
- (1)
- If (), then
- (2)
- If (), then
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duran, U.; Acikgoz, M.; Araci, S. On (p,q)-Bernoulli, (p,q)-Euler and (p,q)-Genocchi Polynomials. J. Comput. Theor. Nanosci. 2016, 13, 7833–7846. [Google Scholar] [CrossRef]
- Guan, H.; Khan, W.A.; Kızılateş, C. On Generalized Bivariate (p,q)-Bernoulli-Fibonacci Polynomials and Generalized Bivariate (p,q)-Bernoulli-Lucas Polynomials. Symmetry 2023, 15, 943. [Google Scholar] [CrossRef]
- Husain, S.; Saddam; Khan, N.; Usman, T.; Junesang, C. The (p,q)-sine and (p,q)-cosine polynomials and their associated (p,q)-polynomials. Analysis 2024, 44, 47–65. [Google Scholar] [CrossRef]
- Khan, W.A.; Muhiuddin, G.; Duran, U.; Al-Kadi, D. On (p,q)-Sine and (p,q)-Cosine Fubini Polynomials. Symmetry 2022, 14, 572. [Google Scholar] [CrossRef]
- Raza, N.; Fadel, M.; Nisar, K.S.; Zakarya, M. On 2-variable q-Hermite polynomials. AIMS Math. 2021, 8, 8705–8727. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the (p,q)-Gamma and the (p,q)-Beta functions. arXiv 2015, arXiv:1506.07394. [Google Scholar]
- Sadjang, P.N. On (p,q)-Appell Polynomials. arXiv 2017, arXiv:1712.01324. [Google Scholar]
- Sadjang, P.N. On the Fundamental Theorem of (p,q)-Calculus and Some (p,q)-Taylor Formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Yasmin, G.; Muhyi, A. On a family of (p,q)-hybrid polynomials. Kragujev. J. Math. 2021, 45, 409–426. [Google Scholar] [CrossRef]
- Babusci, D.; Dattoli; Giuseppe, L.; Licciardi, S.; Sabia, E. Mathematical Methods for Physicists; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2020. [Google Scholar]
- Dattoli, G.; Torre, A. Symmetric q-Bessel functions. Adv. Differ. Equ. 1996, 51, 153–167. [Google Scholar]
- Dattoli, G.; Torre, A. q-Bessel functions: The point of view of the generating function method. Rend. Di Mat. E Delle Sue Applicazioni. Ser. VII 1997, 7, 329–345. [Google Scholar]
- Milovanović, G.V.; Vijay, G.; Neha, M. (p,q)-Beta functions and applications in approximation. Boletín De La Soc. Matemática Mex. 2018, 24, 219–237. [Google Scholar] [CrossRef]
- José L., L.; Nico M., T. Approximations of orthogonal polynomials in terms of Hermite polynomials. Abstr. Appl. Anal. 1999, 6, 131–146. [Google Scholar]
- Mursaleen, M.; Ansari, K.J.; Khan, A. On (p,q)-analogue of Bernstein operators. Appl. Math. Comput. 2015, 266, 874–882. [Google Scholar] [CrossRef]
- Salih, Y.; Müge, A.; Mehmet, S. A collocation method using Hermite polynomials for approximate solution of pantograph equations. J. Frankl. Inst. 2011, 6, 1128–1139. [Google Scholar]
- Soontharanon, J.; Sitthiwirattham, T. Existence results of nonlocal Robin boundary value problems for fractional (p,q)-integrodifference equations. Adv. Differ. Equ. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Andrews, L.C. Special Functions of Mathematics for Engineers, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Appell, P.; De Fériet, J.K. Fonctions Hypergéométriques et Hypersphériques: Polynomes d’Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Cesarano, C. Hermite polynomials and some generalizations on the heat equations. Int. J. Syst. Appl. Eng. Dev. 2014, 8, 193–197. [Google Scholar]
- Dattoli, G.; Roberto, G.; Licciardi, S. Hermite, Higher order Hermite, Laguerre type polynomials and Burgers like equations. J. Comput. Appl. Math. 2024, 445, 115821. [Google Scholar] [CrossRef]
- Widder, D.V. The Heat Equation; Academic Press: Cambridge, MA, USA, 1976; Volume 67. [Google Scholar]
- Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Burban, I.M.; Klimyk, A.U. (P,Q)-differentiation, (P,Q)-integration and (P,Q)-hypergeometric functions related to quantum groups. Integral Transform. Spec. Funct. 1994, 2, 15–36. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Esi, A.; Araci, S. A note on the (p,q)-Hermite polynomials. Appl. Math. Inf. Sci. 2018, 12, 227–231. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Araci, S. A Study on Some New Results Arising from (p,q)-Calculus. TWMS J. Pure Appl. Math. 2020, 11, 57–71. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, N.; Fadel, M.; Du, W.-S. New Summation and Integral Representations for 2-Variable (p,q)-Hermite Polynomials. Axioms 2024, 13, 196. https://doi.org/10.3390/axioms13030196
Raza N, Fadel M, Du W-S. New Summation and Integral Representations for 2-Variable (p,q)-Hermite Polynomials. Axioms. 2024; 13(3):196. https://doi.org/10.3390/axioms13030196
Chicago/Turabian StyleRaza, Nusrat, Mohammed Fadel, and Wei-Shih Du. 2024. "New Summation and Integral Representations for 2-Variable (p,q)-Hermite Polynomials" Axioms 13, no. 3: 196. https://doi.org/10.3390/axioms13030196
APA StyleRaza, N., Fadel, M., & Du, W. -S. (2024). New Summation and Integral Representations for 2-Variable (p,q)-Hermite Polynomials. Axioms, 13(3), 196. https://doi.org/10.3390/axioms13030196