Convergence Results for Contractive Type Set-Valued Mappings
Abstract
:1. Introduction and Preliminaries
2. The First Main Result
3. The Second Main Result
4. Extensions
5. An Example
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bargetz, C.; Medjic, E. On the rate of convergence of iterated Bregman projections and of the alternating algorithm. J. Math. Anal. Appl. 2020, 481, 23. [Google Scholar] [CrossRef]
- de Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. CR Acad. Sci. Paris 1976, 283, 185–187. [Google Scholar]
- Djafari-Rouhani, B.; Kazmi, K.R.; Moradi, S.; Ali, R.; Khan, S.A. Solving the split equality hierarchical fixed point problem. Fixed Point Theory 2022, 23, 351–369. [Google Scholar] [CrossRef]
- Du, W.-S. Some generalizations of fixed point theorems of Caristi type and Mizoguchi–Takahashi type under relaxed conditions. Bull. Braz. Math. Soc. New Ser. 2019, 50, 603–624. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Amer. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Karapinar, E.; Agarwal, R.P.; Yesilkaya, S.S. Perov type mappings with a contractive iterate. J. Nonlinear Convex Anal. 2021, 22, 2531–2541. [Google Scholar]
- Karapinar, E.; Mitrovic, Z.; Ozturk, A.; Radenovic, S. On a theorem of Ciric in b-metric spaces. Rend. Circ. Mat. Palermo 2021, 70, 217–225. [Google Scholar] [CrossRef]
- Khan, A.A.; Li, J.; Reich, S. Generalized projections on general Banach spaces. J. Nonlinear Convex Anal. 2023, 24, 1079–1112. [Google Scholar]
- Kirk, W.A. Handbook of Metric Fixed Point Theory. In Contraction Mappings and Extensions; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kozlowski, W.M. An Introduction to Fixed Point Theory in Modular Function Spaces; Springer: Cham, Switzerland, 2014; pp. 159–222. [Google Scholar]
- Nicolae, A.; O’Regan, D.; Petruşel, A. Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph. Georgian Math. J. 2011, 18, 307–327. [Google Scholar] [CrossRef]
- Petruşel, A.; Petruxsxel, G.; Yao, J.-C. Multi-valued graph contraction principle with applications. Optimization 2020, 69, 1541–1556. [Google Scholar] [CrossRef]
- Petruşel, A.; Rus, I.A.; Serban, M.A. Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators. Set-Valued Var. Anal. 2015, 23, 223–237. [Google Scholar] [CrossRef]
- Rakotch, E. A note on contractive mappings. Proc. Amer. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Reich, S. Fixed points of contractive functions. Boll. Un. Mat. Ital. 1972, 5, 26–42. [Google Scholar]
- Reich, S. Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 1978, 62, 104–113. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Convergence of iterates of nonexpansive set-valued mappings. In Set Valued Mappings with Applications in Nonlinear Analysis; Taylor & Francis: London, UK, 2002; pp. 411–420. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Developments in Mathematics. In Genericity in Nonlinear Analysis; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Contractive mappings on unbounded sets. Set-Valued Var. Anal. 2018, 26, 27–47. [Google Scholar] [CrossRef]
- Suparatulatorn, R.; Cholamjiak, W.; Suantai, S. A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs. Numer. Algorithms 2018, 77, 479–490. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Approximate solutions of common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for solving common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ali, B.; Butt, H.A.; la Sen, M.D. Existence of fixed points of generalized set-valued F-contractions of b-metric spaces. AIMS Math. 2022, 7, 17967–17988. [Google Scholar] [CrossRef]
- Alolaiyan, H.; Ali, B.; Abbas, M. Characterization of a b-metric space completeness via the existence of a fixed point of Ciric-Suzuki type quasi-contractive multivalued operators and applications. Analele Stiintifice Ale Univ. Ovidius Constanta Ser. Mat. 2019, 27, 5–33. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Convergence Results for Contractive Type Set-Valued Mappings. Axioms 2024, 13, 112. https://doi.org/10.3390/axioms13020112
Zaslavski AJ. Convergence Results for Contractive Type Set-Valued Mappings. Axioms. 2024; 13(2):112. https://doi.org/10.3390/axioms13020112
Chicago/Turabian StyleZaslavski, Alexander J. 2024. "Convergence Results for Contractive Type Set-Valued Mappings" Axioms 13, no. 2: 112. https://doi.org/10.3390/axioms13020112
APA StyleZaslavski, A. J. (2024). Convergence Results for Contractive Type Set-Valued Mappings. Axioms, 13(2), 112. https://doi.org/10.3390/axioms13020112