Symmetric Reverse n-Derivations on Ideals of Semiprime Rings
Abstract
:1. Introduction
2. Preliminaries
3. The Results Involving Symmetric Reverse n-Derivations
- 1.
- for all ,
- 2.
- , for all ,
- 3.
- , for all .
- 1.
- , for all ,
- 2.
- , for all ,
- 3.
- , for all .
- 1.
- , for all ,
- 2.
- , for all ,
- 3.
- , for all .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maksa, G. A remark on symmetric bi-additive functions having nonnegative diagonalization. Glas. Math 1980, 15, 279–282. [Google Scholar]
- Vukman, J. Symmetric bi-derivations on prime and semiprime rings. Aeq. Math. 1989, 38, 245–254. [Google Scholar] [CrossRef]
- Vukman, J. Two results concerning symmetric bi-derivations on prime and semiprime rings. Aeq. Math. 1990, 40, 181–189. [Google Scholar] [CrossRef]
- Ashraf, M. On symmetric bi-derivations in rings. Rend. Istit. Mat. Univ. Trieste 1999, 31, 25–36. [Google Scholar]
- Maksa, G. On the trace of symmetric biderivations. C. R. Math. Rep. Acad. Sci. Canada IX 1987, 9, 303–308. [Google Scholar]
- Mehmood, F.; Shi, F.G.; Hayat, K.; Yang, X.P. The homomorphism theorems of M-hazy rings and their induced fuzzifying convexities. Mathematics 2020, 8, 411. [Google Scholar] [CrossRef]
- Mehmood, F.; Shi, F.G.; Hayat, K. A new approach to the fuzzification of rings. J. Nonlinear Convex Anal. 2020, 21, 2637–2646. [Google Scholar]
- Koç Sögütcü, E.; Huang, S. Note on lie ideals with symmetric bi-derivations in semiprime rings. Indian J. Pure Appl. Math. 2023, 54, 608–618. [Google Scholar] [CrossRef]
- Öztürk, M.A. Permuting tri-derivations in prime and semi-prime rings. East Asian Math. J. 1999, 15, 177–190. [Google Scholar]
- Park, K.H. On prime and semi-prime rings with symmetric n-derivations. J. Chungcheong Math. Soc. 2009, 22, 451–458. [Google Scholar]
- Herstein, I.N. Jordan derivations of prime rings. Proc. Amer. Math. Soc. 1957, 8, 1104–1110. [Google Scholar] [CrossRef]
- Brešar, M. Centralizing mappings and derivations in prime rings. J. Algebra 1993, 156, 385–394. [Google Scholar]
- De Barros, D.A.S.; Ferreira, B.L.M.; Guzzo, H., Jr. *-Reverse Derivations on Alternative Algebras. J. Algebra Appl. 2024. [Google Scholar] [CrossRef]
- Aboubakr, A.; Gonzalez, S. Generalized reverse derivation on semi prime rings. Sib. Math. J. 2015, 56, 199–205. [Google Scholar] [CrossRef]
- Koç Sögütcü, E. Multiplicative (generalized)-reverse derivations in rings and Banach algebras. Georgian Math. J. 2023, 30, 555–567. [Google Scholar] [CrossRef]
- Daif, M.N.; Bell, H.E. Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 1992, 15, 205–206. [Google Scholar] [CrossRef]
- Samman, M.S.; Thaheem, A.B. Derivations on semiprime rings. Int. J. Pure. Appl. Math. 2003, 5, 465–472. [Google Scholar]
- Koç Sögütcü, E.; Gölbasi, O. Some result on Lie ideals with symmetric reverse bi-derivations in semiprime rings I. Facta Univ. Ser. Math. Inform. 2021, 36, 309–319. [Google Scholar] [CrossRef]
- Posner, E.C. Derivations in prime rings. Proc. Amer. Math. Soc. 1957, 8, 1093–1100. [Google Scholar] [CrossRef]
- Ashraf, M.; Jamal, M.R. Traces of permuting n-additive maps and permuting n-derivations of rings. Mediterr. J. Math. 2014, 11, 287–297. [Google Scholar] [CrossRef]
- Ashraf, M.; Khan, A.; Jamal, M.R. Traces of permuting generalized n-derivations of rings. Miskolc Math. Notes 2018, 19, 731–740. [Google Scholar] [CrossRef]
- Ashraf, M.; Jamal, M.R.; Mozumder, M.R. On the traces of certain classes of permuting mappings in rings. Georgian Math. J. 2016, 23, 15–23. [Google Scholar] [CrossRef]
- Ali, S.; Alsuraiheed, T.M.; Parveen, N.; Varshney, V. Action of n-derivations and n-multipliers on ideals of (semi)-prime rings. AIMS Math. 2023, 8, 17208–17228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Hummdi, A.Y.; Rafiquee, N.N.; Varshney, V.; Wong, K.B. Symmetric Reverse n-Derivations on Ideals of Semiprime Rings. Axioms 2024, 13, 717. https://doi.org/10.3390/axioms13100717
Ali S, Hummdi AY, Rafiquee NN, Varshney V, Wong KB. Symmetric Reverse n-Derivations on Ideals of Semiprime Rings. Axioms. 2024; 13(10):717. https://doi.org/10.3390/axioms13100717
Chicago/Turabian StyleAli, Shakir, Ali Yahya Hummdi, Naira N. Rafiquee, Vaishali Varshney, and Kok Bin Wong. 2024. "Symmetric Reverse n-Derivations on Ideals of Semiprime Rings" Axioms 13, no. 10: 717. https://doi.org/10.3390/axioms13100717
APA StyleAli, S., Hummdi, A. Y., Rafiquee, N. N., Varshney, V., & Wong, K. B. (2024). Symmetric Reverse n-Derivations on Ideals of Semiprime Rings. Axioms, 13(10), 717. https://doi.org/10.3390/axioms13100717