Existence of Solutions for a Coupled Hadamard Fractional System of Integral Equations in Local Generalized Morrey Spaces
Abstract
:1. Introduction
2. Preliminaries
- A1.
- is Definition 3. nonempty and ,
- A2.
- ,
- A3.
- ,
- A4.
- , for each ,
- A5.
- If is a sequence of closed sets from , such that and , then the set , where is the set of all precompact sets in , and is the set of all nonempty, bounded subsets of .
- D1.
- D2.
- D3.
3. Measure of Non-Compactness on Bounded Domains
4. Applications within Generalized Morrey Spaces
- A.
- Function is continuous and function is measurable. Therefore, positive constants , and exist, such that , and
- B.
- The function is bounded and continuous, with a positive constant M such that .
- C.
- belongs to .
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabatier, J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2012; Volume 3. [Google Scholar]
- Golbabai, A.; Nikan, O.; Nikazad, T. Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media. Int. J. Appl. Comput. Math. 2019, 5, 50. [Google Scholar] [CrossRef]
- Al-Issa, S.M.; Kaddoura, I.H.; Rifai, N.J. Existence and Hyers-Ulam stability of solutions to the implicit second-order differential equation via fractional integral boundary conditions. J. Math. Comput. Sci. 2023, 31, 15–29. [Google Scholar] [CrossRef]
- Can, N.H.; Nikan, O.; Rasoulizadeh, M.N.; Jafari, H.; Gasimov, Y.S. Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Thermal Sci. 2020, 24, 49–58. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Abdurahman, M.; Fouad, H.A. Existence and stability results for the integrable solution of a singular stochastic fractional-order integral equation with delay. J. Math. Comput. Sci. 2024, 33, 17–26. [Google Scholar] [CrossRef]
- Al-Habahbeh, A. Exact solution for commensurate and incommensurate linear systems of fractional differential equations. J. Math. Comput. Sci. 2023, 28, 123–136. [Google Scholar] [CrossRef]
- Oderinu, R.A.; Owolabi, J.A.; Taiwo, M. Approximate solutions of linear time-fractional differential equations. J. Math. Comput. Sci. 2023, 29, 60–72. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Tenreiro Machado, J.A. Localized kernel-based meshless method for pricing financial options underlying fractal transmission system. Math. Methods Appl. Sci. 2024, 47, 3247–3260. [Google Scholar] [CrossRef]
- Aghdam, Y.E.; Mesgrani, H.; Javidi, M.; Nikan, O. A computational approach for the space-time fractional advection–diffusion equation arising in contaminant transport through porous media. Eng. Comput. 2021, 37, 3615–3627. [Google Scholar] [CrossRef]
- Nikan, O.; Golbabai, A.; Machado, J.T.; Nikazad, T. Numerical solution of the fractional Rayleigh–Stokes model arising in a heated generalized second-grade fluid. Eng. Comput. 2021, 37, 1751–1764. [Google Scholar] [CrossRef]
- Kuratowski, K. Sur les espaces complets. Fund. Math. 1930, 15, 301–309. [Google Scholar] [CrossRef]
- Saha, D.; Sen, M.; Sarkar, N.; Saha, S. Existence of a solution in the Holder space for a nonlinear functional integral equation. Arm. J. Math. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Mehravaran, H.; Khanehgir, M.; Allahyari, R. A family of measures of noncompactness in the locally Sobolev spaces and its applications to some nonlinear Volterra integrodifferential equations. J. Math. 2018, 2018, 3579079. [Google Scholar] [CrossRef]
- Mehravaran, H.; Amiri Kayvanloo, H.; Allahyari, R. Measures of noncompactness in the space of regulated functions R(J,R∞) and its application to some nonlinear infinite systems of fractional differential equations. Math. Sci. 2023, 17, 223–232. [Google Scholar] [CrossRef]
- Metwali, M.; Mishra, V.N. On the measure of noncompactness in Lp(R+) and applications to a product of n-integral equations. Turk. J. Math. 2023, 47, 372–386. [Google Scholar] [CrossRef]
- Tamimi, G.; Saiedinezhad, S.; Ghaemi, M. Applications of a new measure of noncompactness to the solvability of systems of nonlinear and fractional integral equations in the generalized Morrey spaces. Fract. Calc. Appl. Anal. 2024, 27, 1215–1235. [Google Scholar] [CrossRef]
- Zhu, B.; Han, B. Existence and uniqueness of mild solutions for fractional partial integro-differential equations. Mediterr. J. Math. 2020, 17, 113. [Google Scholar] [CrossRef]
- Zhu, B.; Han, B. Approximate controllability for mixed type non-autonomous fractional differential equations. Qual. Theory Dyn. Syst. 2022, 21, 111. [Google Scholar] [CrossRef]
- Zhu, B.; Han, B.; Yu, W. Existence of mild solutions for a class of fractional non-autonomous evolution equations with delay. Acta Math. Appl. Sin. Engl. Ser. 2020, 36, 870–878. [Google Scholar] [CrossRef]
- Banaei, S.; Mursaleen, M.; Parvaneh, V. Some fixed point theorems via measure of noncompactness with applications to differential equations. Comput. Appl. Math. 2020, 39, 139. [Google Scholar] [CrossRef]
- Aghajani, A.; Haghighi, A. Existence of solutions for a system of integral equations via measure of noncompactness. Novi Sad J. Math. 2014, 44, 59–73. [Google Scholar]
- Bokayev, N.; Burenkov, V.; Matin, D. On the pre-compactness of a set in the generalized Morrey spaces. Aip Conf. Proc. 2016, 1759, 020108. [Google Scholar] [CrossRef]
- Arab, R.; Allahyari, R.; Shole Haghighi, A. Construction of measures of noncompactness of Ck(Ω) and (Ω) and their application to functional integral-differential equations. Bull. Iran. Math. Soc. 2017, 43, 53–67. [Google Scholar]
- Lv, X.; Zhao, K.; Xie, H. Stability and Numerical Simulation of a Nonlinear Hadamard Fractional Coupling Laplacian System with Symmetric Periodic Boundary Conditions. Symmetry 2024, 16, 774. [Google Scholar] [CrossRef]
- Hadamard, J. Essai sur l’étude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 1892, 8, 101–186. [Google Scholar]
- Ould Melha, K.; Mohammed Djaouti, A.; Latif, M.A.; Chinchane, V.L. Study of Uniqueness and Ulam-Type Stability of Abstract Hadamard Fractional Differential Equations of Sobolev Type via Resolvent Operators. Axioms 2024, 13, 131. [Google Scholar] [CrossRef]
- Maazouz, K.; Zaak, M.D.A.; Rodríguez-López, R. Existence and uniqueness results for a pantograph boundary value problem involving a variable-order Hadamard fractional derivative. Axioms 2023, 12, 1028. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Stamov, G.; Stamova, I. Multiterm impulsive Caputo–Hadamard type differential equations of fractional variable order. Axioms 2022, 11, 634. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Sitho, S.; Khoployklang, T.; Tariboon, J. Sequential Riemann–Liouville and Hadamard–Caputo fractional differential equation with iterated fractional integrals conditions. Axioms 2021, 10, 277. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Chinchane, V.L.; Nale, A.B.; Panchal, S.K.; Chesneau, C.; Khandagale, A.D. On Fractional Inequalities Using Generalized Proportional Hadamard Fractional Integral Operator. Axioms 2022, 11, 266. [Google Scholar] [CrossRef]
- Darbo, G. Punti uniti in trasformazioni a codominio non compatto. Rend. Semin. Mat. Univ. Padova 1955, 24, 84–92. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadadfard, A.; Ghaemi, M.B.; Lopes, A.M. Existence of Solutions for a Coupled Hadamard Fractional System of Integral Equations in Local Generalized Morrey Spaces. Axioms 2024, 13, 688. https://doi.org/10.3390/axioms13100688
Hadadfard A, Ghaemi MB, Lopes AM. Existence of Solutions for a Coupled Hadamard Fractional System of Integral Equations in Local Generalized Morrey Spaces. Axioms. 2024; 13(10):688. https://doi.org/10.3390/axioms13100688
Chicago/Turabian StyleHadadfard, Asra, Mohammad Bagher Ghaemi, and António M. Lopes. 2024. "Existence of Solutions for a Coupled Hadamard Fractional System of Integral Equations in Local Generalized Morrey Spaces" Axioms 13, no. 10: 688. https://doi.org/10.3390/axioms13100688
APA StyleHadadfard, A., Ghaemi, M. B., & Lopes, A. M. (2024). Existence of Solutions for a Coupled Hadamard Fractional System of Integral Equations in Local Generalized Morrey Spaces. Axioms, 13(10), 688. https://doi.org/10.3390/axioms13100688