Second-Order Neutral Differential Equations with a Sublinear Neutral Term: Examining the Oscillatory Behavior
Abstract
:1. Introduction
- (H1)
- and and are ratios of two positive odd integers;
- (H2)
- and
- (H3)
- u, and is not eventually zero on for
2. Auxiliary Results
3. Main Results
3.1. Canonical Case
3.2. Noncanonical Case
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1987; Volume 2004. [Google Scholar]
- Myshkis, A.D. On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument. Mat. Sb. 1951, 70, 641–658. [Google Scholar]
- Cooke, K.L. Differential Difference Equations; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Braun, M. Qualitative Theory of Differential Equations: Differential Equations and Their Applications; Springer: New York, NY, USA, 1993. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Zafer, A. Oscillatory and Nonoscillatory Properties of Solutions of Functional Differential Equations and Difference Equations; Iowa State University: Ames, IA, USA, 1992. [Google Scholar]
- Mustafa, O.G.; Tunç, C. Asymptotically linear solutions of differential equations via Lyapunov functions. Appl. Math. Comput. 2009, 215, 3076–3081. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J. Oscillation theorems for second order neutral differential equations. Comput. Math. Appl. 2011, 61, 94–99. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V.; Zhang, C. Oscillation of second-order neutral differential equations. Funkc. Ekvacioj 2013, 56, 111–120. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T. Oscillation of second-order Emden-Fowler neutral delay differential equations. Ann. Math. 2014, 193, 1861–1875. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients. Complexity 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Moaaz, O.; Masood, F.; Cesarano, C.; Alsallami, S.A.M.; Khalil, E.M.; Bouazizi, M.L. Neutral Differential Equations of Second-Order: Iterative Monotonic Properties. Mathematics 2022, 10, 1356. [Google Scholar] [CrossRef]
- Almarri, B.; Masood, F.; Moaaz, O.; Muhib, A. Amended Criteria for Testing the Asymptotic and Oscillatory Behavior of Solutions of Higher-Order Functional Differential Equations. Axioms 2022, 11, 718. [Google Scholar] [CrossRef]
- Masood, F.; Moaaz, O.; Santra, S.S.; Fernandez-Gamiz, U.; El-Metwally, H. On the monotonic properties and oscillatory behavior of solutions of neutral differential equations. Demonstr. Math. 2023, 56, 20230123. [Google Scholar] [CrossRef]
- Alnafisah, Y.; Masood, F.; Muhib, A.; Moaaz, O. Improved Oscillation Theorems for Even-Order Quasi-Linear Neutral Differential Equations. Symmetry 2023, 15, 1128. [Google Scholar] [CrossRef]
- Tunç, C.; Akyildiz, F.T. Improved Stability and Instability Results for Neutral Integro-Differential Equations including Infinite Delay. J. Math. 2024, 2024, 5924082. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 2016, 61, 35–41. [Google Scholar] [CrossRef]
- Grace, S.R.; Džurina, J.; Jadlovská, I. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inegual. Appl. 2018, 2018, 193. [Google Scholar] [CrossRef]
- Graef, J.R.; Grace, S.R.; Tunc, E. Oscillatory behavior of even-order nonlinear differential equations with a sublinear neutral term. Opusc. Math. 2019, 39, 39–47. [Google Scholar] [CrossRef]
- Džurina, J.; Grace, S.R.; Jadlovská, I. Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 2020, 293, 910–922. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y.; Xiao, J. Oscillation for second order nonlinear differential equations with a sub-linear neutral term. Electron. J. Differ. Equ. 2022, 2022, 53. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Shieh, S.-L.; Yeh, C.-C. Oscillation criteria for second-order retarded differential equations. Math. Comput. Model. 1997, 26, 1–11. [Google Scholar] [CrossRef]
- Kusano, T.; Naito, Y. Oscillation and nonoscillation criteria for second order quasilinear differential equations. Acta Math. Hung. 1997, 76, 81–99. [Google Scholar] [CrossRef]
- Sun, Y.G.; Meng, F.W. Note on the paper of Džurina and Stavroulakis. Appl. Math. Comput. 2006, 174, 1634–1641. [Google Scholar] [CrossRef]
- Džurina, J.; Stavroulakis, I.P. Oscillation criteria for second-order delay differential equations. Appl. Math. Comput. 2003, 140, 445–453. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New oscillation results for second-order neutral delay dynamic equations. Adv. Differ. Equ. 2012, 2012, 1–14. [Google Scholar] [CrossRef]
- Han, Z.; Li, T.; Sun, S.; Chen, W. On the oscillation of second-order neutral delay differential equations. Adv. Differ. Equ. 2010, 8, 289340. [Google Scholar] [CrossRef]
- Han, Z.; Li, T.; Sun, S.; Sun, Y. Remarks on the paper. Appl. Math. Comput. 2010, 215, 3998–4007. [Google Scholar]
- Zhang, C.; Şenel, M.T.; Li, T. Oscillation of second-order half-linear differential equations with several neutral terms. J. Appl. Math. Comput. 2014, 44, 511–518. [Google Scholar] [CrossRef]
- Sun, S.; Li, T.; Han, Z.; Li, H. Oscillation Theorems for Second-order Quasilinear Neutral Functional Differential Equations. Abstr. Appl. Anal. 2012, 2012, 819342. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Oscillation of second-order differential equations with a sublinear neutral term. Carpathian J. Math. 2014, 30, 1–6. [Google Scholar] [CrossRef]
- Tamilvanan, S.; Thandapani, E.; Džurina, J. Oscillation of second order nonlinear differential equations with sub-linear neutral term. Differ. Equ. Appl. 2017, 9, 29–35. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y.; Xiao, J.; Jiao, Z. Oscillatory behavior of a class of second order Emden-Fowler differential equations with a sublinear neutral term. Appl. Math. Sci. Eng. 2023, 31, 224609. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations. Monatshefte FüR Math. 2017, 184, 489–500. [Google Scholar] [CrossRef]
- Erbe, L.H.; Kong, Q.; Zhang, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Kiguradze, I.T.; Chanturiya, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Zhang, C.; Agarwal, R.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef]
Theorems | and | Comparison with Literature Works | Cases | |
---|---|---|---|---|
Special Case | Novelty | |||
Theorem 1 | Extends Theorem 2.1 in [31] | canonical | ||
= 1 | Extends Theorem 1 in [32] | |||
Theorem 2 | n = 1 | Improves Theorem 2.1 in [33] | ||
Theorem 3 | , | Improves Theorems in [31,34] | ||
Theorem 4 | Extended Theorem 2.2 in [31] | noncanonical | ||
Theorem 5 | , | Improves Theorem 2.2 in [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemam, A.; Al-Jaser, A.; Moaaz, O.; Masood, F.; El-Metwally, H. Second-Order Neutral Differential Equations with a Sublinear Neutral Term: Examining the Oscillatory Behavior. Axioms 2024, 13, 681. https://doi.org/10.3390/axioms13100681
Alemam A, Al-Jaser A, Moaaz O, Masood F, El-Metwally H. Second-Order Neutral Differential Equations with a Sublinear Neutral Term: Examining the Oscillatory Behavior. Axioms. 2024; 13(10):681. https://doi.org/10.3390/axioms13100681
Chicago/Turabian StyleAlemam, Ahmed, Asma Al-Jaser, Osama Moaaz, Fahd Masood, and Hamdy El-Metwally. 2024. "Second-Order Neutral Differential Equations with a Sublinear Neutral Term: Examining the Oscillatory Behavior" Axioms 13, no. 10: 681. https://doi.org/10.3390/axioms13100681
APA StyleAlemam, A., Al-Jaser, A., Moaaz, O., Masood, F., & El-Metwally, H. (2024). Second-Order Neutral Differential Equations with a Sublinear Neutral Term: Examining the Oscillatory Behavior. Axioms, 13(10), 681. https://doi.org/10.3390/axioms13100681