Existence Results for Differential Equations with Tempered Ψ–Caputo Fractional Derivatives
Abstract
:1. Introduction
2. Preliminaries
- 1.
- If , then .
- 2.
- For any , if , then , where is the floor function.
3. Existence Results
3.1. Right Side Depending on
3.2. Right Side Depending on
3.3. Right Side Depending on
3.4. Right Side Depending on
3.5. General Right Side
- 1.
- , for each ,
- 2.
- be such that ,
- 3.
- be such that ,
- 4.
- for some are real.
4. Examples
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations, An Application-Oriented Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 204. [Google Scholar]
- Eloe, P.W.; Masthay, T. Initial value problems for Caputo fractional differential equations. J. Fract. Calc. Appl. 2018, 9, 178–195. [Google Scholar]
- Sabzikar, F.; Meerschaert, M.M.; Chen, J.H. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, C.; Chen, Y. On tempered and substantial fractional calculus. In Proceedings of the 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 10–12 September 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Vanterler da C. Sousa, J.; Capelas de Oliveira, E. On the Ψ–Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Fahad, H.M.; Fernandez, A.; Rehman, M.U.; Siddiqi, M. Tempered and Hadamard-type fractional calculus with respect to functions. Mediter. J. Math. 2021, 18, 143. [Google Scholar] [CrossRef]
- Medveď, M.; Brestovanská, E. Differential equations with tempered Ψ–Caputo fractional derivative. Math. Model. Appl. 2021, 26, 631–650. [Google Scholar] [CrossRef]
- Medveď, M.; Pospíšil, M.; Brestovanská, E. A new nonlinear integral inequality with a tempered Ψ–Hilfer fractional integral and its application to a class of tempered Ψ–Caputo fractional differential equations. Axioms 2024, 13, 301. [Google Scholar] [CrossRef]
- Medveď, M.; Pospíšil, M.; Brestovanská, E. Nonlinear integral inequalities involving tempered Ψ–Hilfer fractional integral and fractional equations with tempered Ψ–Caputo fractional derivative. Fractal Fract. 2023, 7, 611. [Google Scholar] [CrossRef]
- Riordan, J. Derivatives of composite functions. Bull. Am. Math. Soc. 1946, 52, 664–667. [Google Scholar] [CrossRef]
- Johnson, W.P. The curious history of Faà di Bruno’s formula. Am. Math. Mon. 2002, 109, 217–234. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus; Pure and Applied Mathematics; Academic Press Inc.: New York, NY, USA, 1984; Volume 111. [Google Scholar]
- Serre, D. Matrices: Theory and Applications, 2nd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 2010; Volume 216. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Prentice Hall, Inc.: Hoboken, NJ, USA, 1965. [Google Scholar]
- Tofighi, A. The intrinsic damping of the fractional oscillator. Physica A 2003, 329, 29–34. [Google Scholar] [CrossRef]
- Bourdin, L. Weighted Hölder continuity of Riemann–Liouville fractional integrals—Application to regularity of solutions to fractional Cauchy problems with Carathéodory dynamics. Fract. Calc. Appl. Anal. 2019, 22, 722–749. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pospíšil, M.; Pospíšilová Škripková, L. Existence Results for Differential Equations with Tempered Ψ–Caputo Fractional Derivatives. Axioms 2024, 13, 680. https://doi.org/10.3390/axioms13100680
Pospíšil M, Pospíšilová Škripková L. Existence Results for Differential Equations with Tempered Ψ–Caputo Fractional Derivatives. Axioms. 2024; 13(10):680. https://doi.org/10.3390/axioms13100680
Chicago/Turabian StylePospíšil, Michal, and Lucia Pospíšilová Škripková. 2024. "Existence Results for Differential Equations with Tempered Ψ–Caputo Fractional Derivatives" Axioms 13, no. 10: 680. https://doi.org/10.3390/axioms13100680
APA StylePospíšil, M., & Pospíšilová Škripková, L. (2024). Existence Results for Differential Equations with Tempered Ψ–Caputo Fractional Derivatives. Axioms, 13(10), 680. https://doi.org/10.3390/axioms13100680