A Bimodal Extension of the Beta-Binomial Distribution with Applications
Abstract
:1. Introduction
2. Bimodal Beta-Binomial Distribution
2.1. Bimodal Beta-Binomial Random Variable
2.2. Two Related Distributions
- 1.
- , , , which is the p.m.f. of the beta-binomial distribution.
- 2.
- If , then , , such that
2.3. Cumulative Distribution Function
2.4. Moments
3. Parameter Estimation
3.1. Maximum Likelihood Estimation
3.2. Simulation Study
4. Applications
4.1. Alcohol Consumption Data
4.2. Candidate Assessment Data
5. Final Comments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. R Functions
- BBB-distribution;Includes R codes for computing the structural functions of the BBB distribution.
p.m.f. →dBBB(); c.d.f. → pBBB(); rth moment → momBBB() |
coefficient of variation →coef.var(); skewness coefficient → skewnessBBB(). |
- 2.
- BB-McGBB-distribution;Includes R codes for computing the p.m.f.s of the BB and McGBB distributions.
BB p.m.f. → dBB(); McGBB p.m.f. → dMcGBB(). |
- 3.
- Log-likelihood;Includes R codes for computing the log-likelihood functions to obtain the ML estimators using the optim() function.
BB log-likelihood → loglikBB() |
McGBB log-likelihood → loglikMcGBB() |
BBB log-likelihood → loglikBBB(). |
- 4.
- Application-alcohol-week1 (week2);Includes the data and results obtained in the analysis in Section 4.1.
- 5.
- Application-candidate;Includes the data and results obtained in the analysis in Section 4.2.
References
- Böhning, D.; Dietz, E.; Schlattmann, P.; Mendonca, L.; Kirchner, U. The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology. J. R. Stat. Soc. Ser. A Stat. Soc. 1999, 162, 195–209. [Google Scholar] [CrossRef]
- Salman, A.K.; Fuchs, M.; Zampatti, D. Assessing risk factors of business failure in manufactoring sector: A count data approach from Sweden. Int. J. Econ. Commer. Manag. 2015, 3, 42–62. [Google Scholar]
- Calabria, R.; Guida, M.; Pulcini, G. Reliability analysis of repairable systems from in–service failure count data. Appl. Stoch. Model. Data Anal. 1994, 10, 141–151. [Google Scholar] [CrossRef]
- Alanko, T.; Lemmens, P.H. Response effects in consumption surveys: An application of the beta-binomial model to self-reported drinking frequencies. J. Off. Stat. 1996, 12, 253. [Google Scholar]
- Wilcox, R.R. A review of the beta-binomial model and its extensions. J. Educ. Stat. 1981, 6, 3–32. [Google Scholar] [CrossRef]
- Crowder, M.J. Beta-binomial ANOVA for proportions. Appl. Stat. 1978, 27, 34–37. [Google Scholar] [CrossRef]
- Tripathi, R.C.; Gupta, R.C.; Gurland, J. Estimation of parameters in the beta binomial model. Ann. Inst. Stat. Math. 1994, 46, 317–331. [Google Scholar] [CrossRef]
- Palm, B.G.; Bayer, F.M.; Cintra, R.J. Signal detection and inference based on the beta binomial autoregressive moving average model. Digit. Signal Process. 2021, 109, 102911. [Google Scholar] [CrossRef]
- Chen, H.; Li, Q.; Zhu, F. A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application. Metrika 2023, 86, 805–826. [Google Scholar] [CrossRef]
- Jansen, K.; Holling, H. Rare events meta-analysis using the Bayesian beta-binomial model. Res. Synth. Methods 2023, 14, 853–873. [Google Scholar] [CrossRef]
- Fisher, R.A. The effect of methods of ascertainment upon the estimation of frequencies. Ann. Eugen. 1934, 6, 13–25. [Google Scholar] [CrossRef]
- Rao, C.R. On discrete distributions arising out of methods of ascertainment. Sankhyā Indian J. Stat. Ser. A 1965, 27, 311–324. [Google Scholar]
- Elal-Olivero, D. Alpha-skew-normal distribution. Proyecciones 2010, 29, 224–240. [Google Scholar] [CrossRef]
- Gómez-Déniz, E.; Pérez-Rodríguez, J.V.; Reyes, J.; Gómez, H.W. A bimodal discrete shifted Poisson distribution. a case study of tourists’ length of stay. Symmetry 2020, 12, 442. [Google Scholar] [CrossRef]
- Cortés, I.; Reyes, J.; Iriarte, Y.A. A Weighted Skew-Logistic Distribution with Applications to Environmental Data. Mathematics 2024, 12, 1287. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Neumann, V. Various techniques used in connection with random digits. Natl. Bur. Stand. 1951, 12, 36–38. [Google Scholar]
- Manoj, C.; Wijekoon, P.; Yapa, R.D. The McDonald generalized beta-binomial distribution: A new binomial mixture distribution and simulation based comparison with its nested distributions in handling overdispersion. Int. J. Stat. Probab. 2013, 2, 24. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Ameijeiras-Alonso, J.; Crujeiras, R.M.; Rodríguez-Casal, A. Mode testing, critical bandwidth and excess mass. Test 2019, 28, 900–919. [Google Scholar] [CrossRef]
- Ameijeiras-Alonso, J.; Crujeiras, R.M.; Rodriguez-Casal, A. Multimode: An R package for mode assessment. arXiv 2018, arXiv:1803.00472. [Google Scholar] [CrossRef]
- Xiaohu, L.; Yanyan, H.; Xueyan, Z. The Kumaraswamy binomial distribution. Chin. J. Appl. Probab. Stat. 2011, 27, 511–521. [Google Scholar]
- Rodríguez-Avi, J.; Conde-Sánchez, A.; Sáez-Castillo, A.; Olmo-Jiménez, M. A generalization of the beta–binomial distribution. J. R. Stat. Soc. Ser. C Appl. Stat. 2007, 56, 51–61. [Google Scholar] [CrossRef]
- Paul, S. A three-parameter generalization of the binomial distribution. Hist. Philos. Log. 1985, 14, 1497–1506. [Google Scholar] [CrossRef]
m | n | q | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
50 | 30 | 0.5 | 1 | 2 | 0.517 | 0.117 | 1.043 | 0.292 | 2.184 | 0.681 |
100 | 30 | 0.5 | 1 | 2 | 0.506 | 0.081 | 1.012 | 0.199 | 2.072 | 0.404 |
150 | 30 | 0.5 | 1 | 2 | 0.505 | 0.066 | 1.004 | 0.160 | 2.062 | 0.323 |
200 | 30 | 0.5 | 1 | 2 | 0.502 | 0.057 | 0.999 | 0.138 | 2.034 | 0.273 |
300 | 30 | 0.5 | 1 | 2 | 0.501 | 0.046 | 0.999 | 0.112 | 2.020 | 0.219 |
50 | 30 | 0.5 | 2 | 1 | 0.533 | 0.146 | 2.322 | 0.879 | 1.032 | 0.322 |
100 | 30 | 0.5 | 2 | 1 | 0.512 | 0.100 | 2.132 | 0.594 | 1.010 | 0.220 |
150 | 30 | 0.5 | 2 | 1 | 0.507 | 0.081 | 2.065 | 0.473 | 1.005 | 0.176 |
200 | 30 | 0.5 | 2 | 1 | 0.504 | 0.070 | 2.048 | 0.413 | 1.005 | 0.150 |
300 | 30 | 0.5 | 2 | 1 | 0.502 | 0.057 | 2.037 | 0.338 | 1.003 | 0.121 |
50 | 30 | 3.0 | 5 | 2 | 3.167 | 0.717 | 5.340 | 1.388 | 2.155 | 0.620 |
100 | 30 | 3.0 | 5 | 2 | 3.068 | 0.484 | 5.141 | 0.931 | 2.075 | 0.394 |
150 | 30 | 3.0 | 5 | 2 | 3.046 | 0.389 | 5.084 | 0.743 | 2.062 | 0.315 |
200 | 30 | 3.0 | 5 | 2 | 3.023 | 0.334 | 5.045 | 0.638 | 2.039 | 0.268 |
300 | 30 | 3.0 | 5 | 2 | 3.015 | 0.271 | 5.030 | 0.517 | 2.026 | 0.215 |
50 | 30 | 5.0 | 3 | 2 | 5.347 | 1.261 | 3.317 | 1.049 | 2.197 | 0.723 |
100 | 30 | 5.0 | 3 | 2 | 5.112 | 0.829 | 3.103 | 0.680 | 2.085 | 0.442 |
150 | 30 | 5.0 | 3 | 2 | 5.072 | 0.668 | 3.057 | 0.547 | 2.066 | 0.349 |
200 | 30 | 5.0 | 3 | 2 | 5.045 | 0.573 | 3.038 | 0.469 | 2.048 | 0.296 |
300 | 30 | 5.0 | 3 | 2 | 5.039 | 0.466 | 3.034 | 0.381 | 2.036 | 0.237 |
50 | 30 | 1.0 | 2 | 3 | 1.015 | 0.163 | 2.029 | 0.323 | 3.217 | 0.871 |
100 | 30 | 1.0 | 2 | 3 | 1.008 | 0.145 | 2.013 | 0.286 | 3.159 | 0.741 |
150 | 30 | 1.0 | 2 | 3 | 1.005 | 0.118 | 2.002 | 0.231 | 3.110 | 0.575 |
200 | 30 | 1.0 | 2 | 3 | 1.001 | 0.102 | 2.001 | 0.200 | 3.064 | 0.481 |
300 | 30 | 1.0 | 2 | 3 | 1.001 | 0.083 | 2.000 | 0.163 | 3.032 | 0.382 |
50 | 30 | 1.0 | 3 | 2 | 1.039 | 0.231 | 3.127 | 0.724 | 2.135 | 0.574 |
100 | 30 | 1.0 | 3 | 2 | 1.012 | 0.159 | 3.040 | 0.492 | 2.053 | 0.368 |
150 | 30 | 1.0 | 3 | 2 | 1.008 | 0.129 | 3.011 | 0.395 | 2.042 | 0.295 |
200 | 30 | 1.0 | 3 | 2 | 1.003 | 0.111 | 3.004 | 0.341 | 2.022 | 0.251 |
300 | 30 | 1.0 | 3 | 2 | 1.002 | 0.090 | 3.003 | 0.278 | 2.016 | 0.203 |
50 | 30 | 2.0 | 3 | 1 | 2.233 | 0.631 | 3.647 | 1.344 | 1.060 | 0.463 |
100 | 30 | 2.0 | 3 | 1 | 2.099 | 0.421 | 3.284 | 0.846 | 1.018 | 0.288 |
150 | 30 | 2.0 | 3 | 1 | 2.060 | 0.342 | 3.177 | 0.681 | 1.007 | 0.229 |
200 | 30 | 2.0 | 3 | 1 | 2.039 | 0.291 | 3.122 | 0.577 | 1.005 | 0.192 |
300 | 30 | 2.0 | 3 | 1 | 2.032 | 0.239 | 3.093 | 0.474 | 1.007 | 0.153 |
Number of Drinking Days | Observed Frequency (Week 1) | Expected BB Frequency (Week 1) | Expected McGBB Frequency (Week 1) | Expected BBB Frequency (Week 1) | Observed Frequency (Week 2) | Expected BB Frequency (Week 2) | Expected McGBB Frequency (Week 2) | Expected BBB Frequency (Week 2) |
---|---|---|---|---|---|---|---|---|
0 | 47 | 54.60 | 51.29 | 48.39 | 42 | 47.90 | 45.92 | 41.62 |
1 | 54 | 42.00 | 45.67 | 41.93 | 47 | 42.90 | 45.13 | 48.86 |
2 | 43 | 38.90 | 43.17 | 46.28 | 54 | 41.90 | 44.75 | 49.37 |
3 | 40 | 38.50 | 41.61 | 42.65 | 40 | 42.50 | 44.50 | 47.03 |
4 | 40 | 40.10 | 40.52 | 39.26 | 49 | 44.30 | 44.35 | 43.70 |
5 | 41 | 44.00 | 40.01 | 37.46 | 40 | 47.80 | 44.51 | 41.14 |
6 | 39 | 53.10 | 41.83 | 41.11 | 43 | 54.90 | 46.57 | 43.28 |
7 | 95 | 87.80 | 94.90 | 94.85 | 84 | 76.70 | 83.26 | 83.96 |
Total | 399 | 399 | 399 | 399 | 399 | 399 | 399 | 399 |
9.600 | 2.162 | 0.366 | 9.700 | 4.004 | 1.397 | |||
DF | 5 | 4 | 4 | 5 | 4 | 4 | ||
p-value | 0.086 | 0.706 | 0.833 | 0.082 | 0.406 | 0.986 | ||
ML | 0.722 | 0.028 | 1.147 | 0.858 | 0.027 | 1.354 | ||
estimates | 0.581 | 0.155 | 0.325 | 0.701 | 0.215 | 0.392 | ||
- | 32.345 | 0.701 | - | 36.075 | 0.732 | |||
Log-Likelihood | −813.457 | −809.627 | −809.329 | −821.392 | −818.402 | −817.650 | ||
AIC | 1630.9 | 1625.3 | 1624.7 | 1646.8 | 1642.8 | 1641.3 | ||
BIC | 1638.9 | 1637.2 | 1636.6 | 1654.8 | 1654.8 | 1653.3 |
Number of Alphas | Observed Frequency | Expected BB Frequency | Expected McGBB Frequency | Expected BBB Frequency |
---|---|---|---|---|
0 | 63 | 63.67 | 63.49 | 63.41 |
1 | 67 | 49.23 | 50.37 | 66.31 |
2 | 34 | 35.84 | 35.89 | 38.93 |
3 | 18 | 24.81 | 24.35 | 17.05 |
4 | 11 | 16.24 | 15.77 | 8.29 |
5 | 8 | 9.89 | 9.64 | 6.18 |
6 | 4 | 5.47 | 5.43 | 4.80 |
7 | 3 | 2.63 | 2.70 | 2.79 |
8 | 1 | 1.00 | 1.09 | 1.05 |
9 | 0 | 0.23 | 0.28 | 0.20 |
Total | 209 | 209 | 209 | 209 |
11.121 | 9.669 | 2.457 | ||
DF | 7 | 6 | 6 | |
p-value | 0.133 | 0.139 | 0.873 | |
ML | 1.057 | 16.543 | 2.465 | |
estimates | 4.300 | 3.702 | 5.921 | |
- | 0.101 | 0.942 | ||
Log-Likelihood | −354.025 | −353.414 | −351.319 | |
AIC | 712.051 | 712.828 | 708.639 | |
BIC | 718.735 | 722.855 | 718.665 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes, J.; Najera-Zuloaga, J.; Lee, D.-J.; Arrué, J.; Iriarte, Y.A. A Bimodal Extension of the Beta-Binomial Distribution with Applications. Axioms 2024, 13, 662. https://doi.org/10.3390/axioms13100662
Reyes J, Najera-Zuloaga J, Lee D-J, Arrué J, Iriarte YA. A Bimodal Extension of the Beta-Binomial Distribution with Applications. Axioms. 2024; 13(10):662. https://doi.org/10.3390/axioms13100662
Chicago/Turabian StyleReyes, Jimmy, Josu Najera-Zuloaga, Dae-Jin Lee, Jaime Arrué, and Yuri A. Iriarte. 2024. "A Bimodal Extension of the Beta-Binomial Distribution with Applications" Axioms 13, no. 10: 662. https://doi.org/10.3390/axioms13100662
APA StyleReyes, J., Najera-Zuloaga, J., Lee, D. -J., Arrué, J., & Iriarte, Y. A. (2024). A Bimodal Extension of the Beta-Binomial Distribution with Applications. Axioms, 13(10), 662. https://doi.org/10.3390/axioms13100662