Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model
Abstract
:1. Introduction
2. Methodology
2.1. Poisson Regression Model
2.2. Poisson Ridge Regression Estimator (PRRE)
2.3. Poisson Liu Estimator (PLE)
- When , the PLE is the same as the PMLE.
- When , the PLE tends to produce parameter estimates that are closer to zero than the PMLE. This effect helps reduce the impact of multicollinearity in the data.
2.4. Poisson-Adjusted Liu Estimator (PALE)
2.5. Proposed Poisson Modified Two-Parameter Liu Estimator (PMTPLE)
3. Comparison of the Estimators
4. Selection of the Biasing Parameter
4.1. Ridge Parameter
4.2. Liu Parameter
4.3. Adjusted Liu Parameter
4.4. Proposed Estimator Parameters
5. Monte Carlo Simulation
5.1. Simulation Design
5.2. Simulation Results
5.3. Relative Efficiency
6. Applications
6.1. Mussel Data
- PMLE: This estimator had an intercept of 2.09378 and coefficient values for each predictor variable ( through ). The associated MSE was 6.27306.
- PRRE: We considered three variations of the PRRE, each with a different biasing parameter—, , and . These estimators had varying intercepts and coefficient values for the predictor variables. The MSE values ranged from 0.15981 to 0.97892.
- PLE: We considered two variations of the PLE, both with the same biasing parameter . These estimators had consistent intercepts and coefficient values for the predictor variables, thereby resulting in an identical MSE of 0.13671.
- PALE: This estimator, represented by , had consistent intercept and coefficient values for the predictor variables. The MSE was 0.13671, thus matching the PLE.
- PMTPLE: We considered five variations of the PMTPLE, denoted by through . These estimators had varying intercepts and coefficient values for the predictor variables. The MSE values ranged from 0.01931 to 0.88043.
6.2. Recreation Demand Data
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, J.S.; Tenreyro, S. The log of gravity. Rev. Econ. Stat. 2006, 88, 641–658. [Google Scholar] [CrossRef]
- Manning, W.G.; Mullahy, J. Estimating log models: To transform or not to transform? J. Health Econ. 2001, 20, 461–494. [Google Scholar] [CrossRef] [PubMed]
- Månsson, K.; Shukur, G. A Poisson ridge regression estimator. Econ. Model. 2011, 28, 1475–1481. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Alkhamisi, M.; Khalaf, G.; Shukur, G. Some modifications for choosing ridge parameters. Commun. Stat. Theory Methods 2006, 35, 2005–2020. [Google Scholar] [CrossRef]
- Alkhamisi, M.A.; Shukur, G. Developing ridge parameters for SUR model. Commun. Stat. Theory Methods 2008, 37, 544–564. [Google Scholar] [CrossRef]
- Khalaf, G.; Shukur, G. Choosing ridge parameter for regression problems. Commun. Stat. Theory Methods 2005, 34, 1177–1182. [Google Scholar] [CrossRef]
- Kibria, B.G. Performance of some new ridge regression estimators. Commun. Stat. Simul. Comput. 2003, 32, 419–435. [Google Scholar] [CrossRef]
- Muniz, G.; Kibria, B.G. On some ridge regression estimators: An empirical comparisons. Commun. Stat. Simul. Comput. 2009, 38, 621–630. [Google Scholar] [CrossRef]
- Kejian, L. A new class of biased estimate in linear regression. Commun. Stat. Theory Methods 1993, 22, 393–402. [Google Scholar] [CrossRef]
- Månsson, K.; Kibria, B.G.; Sjölander, P.; Shukur, G. Improved Liu estimators for the Poisson regression model. Int. J. Stat. Probab. 2012, 1, 2. [Google Scholar] [CrossRef]
- Amin, M.; Akram, M.N.; Kibria, B.G. A new adjusted Liu estimator for the Poisson regression model. Concurr. Comput. Pract. Exp. 2021, 33, e6340. [Google Scholar] [CrossRef]
- Lukman, A.F.; Kibria, B.G.; Ayinde, K.; Jegede, S.L. Modified one-parameter Liu estimator for the linear regression model. Model. Simul. Eng. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Algamal, Z.Y.; Abonazel, M.R. Developing a Liu-type estimator in beta regression model. Concurr. Comput. Pract. Exp. 2022, 34, e6685. [Google Scholar] [CrossRef]
- Yang, H.; Chang, X. A new two-parameter estimator in linear regression. Commun. Stat. Theory Methods 2010, 39, 923–934. [Google Scholar] [CrossRef]
- Abonazel, M.R.; Awwad, F.A.; Tag Eldin, E.; Kibria, B.G.; Khattab, I.G. Developing a two-parameter Liu estimator for the COM—Poisson regression model: Application and simulation. Front. Appl. Math. Stat. 2023, 9, 956963. [Google Scholar] [CrossRef]
- Omara, T.M. Modifying two-parameter ridge Liu estimator based on ridge estimation. Pak. J. Stat. Oper. Res. 2019, 15, 881–890. [Google Scholar] [CrossRef]
- Abonazel, M.R.; Algamal, Z.Y.; Awwad, F.A.; Taha, I.M. A new two-parameter estimator for beta regression model: Method, simulation, and application. Front. Appl. Math. Stat. 2022, 7, 780322. [Google Scholar] [CrossRef]
- Segerstedt, B. On ordinary ridge regression in generalized linear models. Commun. Stat. Theory Methods 1992, 21, 2227–2246. [Google Scholar] [CrossRef]
- Månsson, K.; Kibria, B.G.; Sjölander, P.; Shukur, G.; Sweden, V. New Liu Estimators for the Poisson Regression Model: Method and Application; Technical Report; HUI Research: Stockholm, Swizerland, 2011. [Google Scholar]
- Abonazel, M.R. New modified two-parameter Liu estimator for the Conway—Maxwell Poisson regression model. J. Stat. Comput. Simul. 2023, 93, 1976–1996. [Google Scholar] [CrossRef]
- Trenkler, G.; Toutenburg, H. Mean squared error matrix comparisons between biased estimators—An overview of recent results. Stat. Pap. 1990, 31, 165–179. [Google Scholar] [CrossRef]
- Lukman, A.F.; Aladeitan, B.; Ayinde, K.; Abonazel, M.R. Modified ridge-type for the Poisson regression model: Simulation and application. J. Appl. Stat. 2022, 49, 2124–2136. [Google Scholar] [CrossRef] [PubMed]
- Aladeitan, B.B.; Adebimpe, O.; Lukman, A.F.; Oludoun, O.; Abiodun, O.E. Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: Application and simulation. F1000Research 2021, 10, 548. [Google Scholar] [CrossRef]
- Kibria, B.G.; Månsson, K.; Shukur, G. A simulation study of some biasing parameters for the ridge type estimation of Poisson regression. Commun. Stat. Simul. Comput. 2015, 44, 943–957. [Google Scholar] [CrossRef]
- Ertan, E.; Akay, K.U. A new class of Poisson Ridge-type estimator. Sci. Rep. 2023, 13, 4968. [Google Scholar] [CrossRef] [PubMed]
- Akay, K.U.; Ertan, E. A new improved Liu-type estimator for Poisson regression models. Hacet. J. Math. Stat. 2022, 51, 1484–1503. [Google Scholar] [CrossRef]
- Türkan, S.; Özel, G. A new modified Jackknifed estimator for the Poisson regression model. J. Appl. Stat. 2016, 43, 1892–1905. [Google Scholar] [CrossRef]
- Qasim, M.; Kibria, B.; Månsson, K.; Sjölander, P. A new Poisson Liu regression estimator: Method and application. J. Appl. Stat. 2020, 47, 2258–2271. [Google Scholar] [CrossRef]
- McDonald, G.C.; Galarneau, D.I. A Monte Carlo evaluation of some ridge-type estimators. J. Am. Stat. Assoc. 1975, 70, 407–416. [Google Scholar] [CrossRef]
- Farghali, R.A.; Qasim, M.; Kibria, B.G.; Abonazel, M.R. Generalized two-parameter estimators in the multinomial logit regression model: Methods, simulation and application. Commun. Stat. Simul. Comput. 2023, 52, 3327–3342. [Google Scholar] [CrossRef]
- Abonazel, M.R.; Taha, I.M. Beta ridge regression estimators: Simulation and application. Commun. Stat. Simul. Comput. 2023, 52, 4280–4292. [Google Scholar] [CrossRef]
- Batool, A.; Amin, M.; Elhassanein, A. On the performance of some new ridge parameter estimators in the Poisson-inverse Gaussian ridge regression. Alex. Eng. J. 2023, 70, 231–245. [Google Scholar] [CrossRef]
- Sepkoski, J.J., Jr.; Rex, M.A. Distribution of freshwater mussels: Coastal rivers as biogeographic islands. Syst. Biol. 1974, 23, 165–188. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. Regression Analysis of Count Data; Cambridge University Press: Cambridge, UK, 2013; Volume 53. [Google Scholar]
PRRE | PLE | PMTPLE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | PMLE | ||||||||||||
0.85 | 50 | 0.67563 | 0.49253 | 0.56180 | 0.27644 | 0.38134 | 0.36917 | 0.36789 | 0.27391 | 0.31304 | 0.25728 | 0.27598 | 0.26304 |
100 | 0.21563 | 0.19059 | 0.19935 | 0.15853 | 0.17618 | 0.17612 | 0.17599 | 0.15769 | 0.16454 | 0.14582 | 0.15531 | 0.15755 | |
150 | 0.12519 | 0.11485 | 0.11923 | 0.10758 | 0.11057 | 0.11057 | 0.11056 | 0.10309 | 0.10644 | 0.10075 | 0.10316 | 0.10660 | |
200 | 0.09303 | 0.08927 | 0.09018 | 0.08341 | 0.08617 | 0.08617 | 0.08619 | 0.08347 | 0.08415 | 0.08068 | 0.08252 | 0.08334 | |
250 | 0.07535 | 0.07235 | 0.07341 | 0.06904 | 0.07060 | 0.07060 | 0.07060 | 0.06839 | 0.06923 | 0.06736 | 0.06814 | 0.06959 | |
300 | 0.06565 | 0.06348 | 0.06410 | 0.06055 | 0.06194 | 0.06194 | 0.06194 | 0.06033 | 0.06082 | 0.05892 | 0.05989 | 0.06081 | |
400 | 0.03713 | 0.03636 | 0.03666 | 0.03562 | 0.03593 | 0.03593 | 0.03593 | 0.03540 | 0.03562 | 0.03534 | 0.03540 | 0.03581 | |
0.90 | 50 | 0.60222 | 0.44454 | 0.50659 | 0.29022 | 0.36222 | 0.35466 | 0.35295 | 0.26536 | 0.30353 | 0.25249 | 0.26896 | 0.26101 |
100 | 0.25841 | 0.21998 | 0.23369 | 0.18755 | 0.20016 | 0.19998 | 0.19983 | 0.17182 | 0.18256 | 0.15578 | 0.16867 | 0.17247 | |
150 | 0.19755 | 0.17716 | 0.18407 | 0.15815 | 0.16576 | 0.16570 | 0.16563 | 0.14947 | 0.15524 | 0.13616 | 0.14643 | 0.14932 | |
200 | 0.08574 | 0.08042 | 0.08289 | 0.07862 | 0.07916 | 0.07916 | 0.07911 | 0.07497 | 0.07698 | 0.07327 | 0.07512 | 0.07728 | |
250 | 0.07492 | 0.07149 | 0.07258 | 0.06902 | 0.06973 | 0.06973 | 0.06973 | 0.06676 | 0.06772 | 0.06315 | 0.06590 | 0.06715 | |
300 | 0.05873 | 0.05630 | 0.05732 | 0.05550 | 0.05556 | 0.05556 | 0.05556 | 0.05350 | 0.05439 | 0.05214 | 0.05334 | 0.05479 | |
400 | 0.04105 | 0.03990 | 0.04029 | 0.03925 | 0.03937 | 0.03937 | 0.03937 | 0.03838 | 0.03872 | 0.03731 | 0.03814 | 0.03886 | |
0.95 | 50 | 1.78215 | 1.05867 | 1.30207 | 0.30009 | 0.60241 | 0.51879 | 0.51679 | 0.28278 | 0.37181 | 0.29233 | 0.29500 | 0.19406 |
100 | 0.56284 | 0.42416 | 0.47810 | 0.29171 | 0.35681 | 0.35361 | 0.35313 | 0.25844 | 0.29863 | 0.23054 | 0.25796 | 0.25004 | |
150 | 0.29915 | 0.25237 | 0.26873 | 0.21524 | 0.22922 | 0.22900 | 0.22878 | 0.19247 | 0.20603 | 0.16943 | 0.18743 | 0.19110 | |
200 | 0.21915 | 0.19498 | 0.20219 | 0.17047 | 0.18077 | 0.18076 | 0.18076 | 0.16060 | 0.16690 | 0.14052 | 0.15506 | 0.15808 | |
250 | 0.17503 | 0.15909 | 0.16346 | 0.14222 | 0.14950 | 0.14950 | 0.14950 | 0.13594 | 0.13981 | 0.12062 | 0.13138 | 0.13474 | |
300 | 0.16159 | 0.14822 | 0.15181 | 0.13406 | 0.14021 | 0.14021 | 0.14021 | 0.12866 | 0.13188 | 0.11463 | 0.12455 | 0.12757 | |
400 | 0.08576 | 0.08187 | 0.08282 | 0.07799 | 0.07944 | 0.07944 | 0.07944 | 0.07595 | 0.07682 | 0.07062 | 0.07442 | 0.07562 | |
0.99 | 50 | 7.82841 | 3.98900 | 4.75012 | 0.22122 | 0.93033 | 0.36081 | 0.36061 | 0.21201 | 0.21070 | 0.19707 | 0.16603 | 1.51426 |
100 | 2.44535 | 1.34157 | 1.69238 | 0.26887 | 0.65236 | 0.50147 | 0.50084 | 0.22091 | 0.32303 | 0.25868 | 0.24074 | 0.10096 | |
150 | 1.36222 | 0.81568 | 1.01303 | 0.35674 | 0.53125 | 0.48827 | 0.48789 | 0.25109 | 0.34941 | 0.26533 | 0.27042 | 0.16967 | |
200 | 1.00792 | 0.64721 | 0.78655 | 0.36658 | 0.47747 | 0.46099 | 0.46077 | 0.26361 | 0.34925 | 0.25663 | 0.27779 | 0.21929 | |
250 | 0.80647 | 0.54583 | 0.64374 | 0.34037 | 0.42061 | 0.41277 | 0.41276 | 0.25668 | 0.32187 | 0.23404 | 0.26079 | 0.22371 | |
300 | 0.75357 | 0.52857 | 0.61419 | 0.33920 | 0.41702 | 0.40992 | 0.40992 | 0.26792 | 0.32745 | 0.24116 | 0.26984 | 0.24271 | |
400 | 0.40385 | 0.32501 | 0.35402 | 0.26892 | 0.28710 | 0.28663 | 0.28663 | 0.22520 | 0.24930 | 0.19351 | 0.21939 | 0.22089 |
PRRE | PLE | PMTPLE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | PMLE | ||||||||||||
0.85 | 50 | 0.23444 | 0.18802 | 0.20481 | 0.20504 | 0.19318 | 0.19314 | 0.18613 | 0.15169 | 0.16770 | 0.12830 | 0.14820 | 0.16812 |
100 | 0.07919 | 0.07386 | 0.07516 | 0.07599 | 0.07451 | 0.07451 | 0.07384 | 0.06940 | 0.07068 | 0.06188 | 0.06725 | 0.07151 | |
150 | 0.04793 | 0.04591 | 0.04636 | 0.04691 | 0.04616 | 0.04616 | 0.04590 | 0.04421 | 0.04466 | 0.04097 | 0.04326 | 0.04520 | |
200 | 0.03396 | 0.03301 | 0.03321 | 0.03347 | 0.03314 | 0.03314 | 0.03301 | 0.03221 | 0.03241 | 0.03055 | 0.03173 | 0.03262 | |
250 | 0.02696 | 0.02630 | 0.02645 | 0.02663 | 0.02640 | 0.02640 | 0.02630 | 0.02576 | 0.02591 | 0.02464 | 0.02544 | 0.02611 | |
300 | 0.02403 | 0.02352 | 0.02363 | 0.02377 | 0.02359 | 0.02359 | 0.02352 | 0.02310 | 0.02321 | 0.02218 | 0.02284 | 0.02333 | |
400 | 0.01378 | 0.01362 | 0.01365 | 0.01370 | 0.01364 | 0.01364 | 0.01362 | 0.01349 | 0.01351 | 0.01318 | 0.01339 | 0.01358 | |
0.90 | 50 | 0.20725 | 0.17038 | 0.18223 | 0.18547 | 0.17414 | 0.17414 | 0.16989 | 0.14086 | 0.15225 | 0.11652 | 0.13522 | 0.15259 |
100 | 0.08739 | 0.07921 | 0.08120 | 0.08316 | 0.08006 | 0.08006 | 0.07915 | 0.07232 | 0.07428 | 0.06235 | 0.06923 | 0.07532 | |
150 | 0.06653 | 0.06250 | 0.06336 | 0.06446 | 0.06292 | 0.06292 | 0.06248 | 0.05904 | 0.05989 | 0.05292 | 0.05714 | 0.06064 | |
200 | 0.03367 | 0.03274 | 0.03287 | 0.03318 | 0.03280 | 0.03280 | 0.03274 | 0.03190 | 0.03202 | 0.03001 | 0.03129 | 0.03229 | |
250 | 0.02643 | 0.02580 | 0.02587 | 0.02611 | 0.02584 | 0.02584 | 0.02580 | 0.02523 | 0.02530 | 0.02384 | 0.02478 | 0.02545 | |
300 | 0.02054 | 0.02016 | 0.02021 | 0.02036 | 0.02019 | 0.02019 | 0.02016 | 0.01982 | 0.01986 | 0.01897 | 0.01954 | 0.02000 | |
400 | 0.01513 | 0.01491 | 0.01494 | 0.01503 | 0.01493 | 0.01493 | 0.01491 | 0.01472 | 0.01474 | 0.01422 | 0.01456 | 0.01482 | |
0.95 | 50 | 0.60222 | 0.37357 | 0.45932 | 0.40730 | 0.36263 | 0.36212 | 0.34440 | 0.19653 | 0.26673 | 0.18277 | 0.20958 | 0.23705 |
100 | 0.19604 | 0.16306 | 0.17314 | 0.17548 | 0.16599 | 0.16599 | 0.16253 | 0.13572 | 0.14554 | 0.11000 | 0.12915 | 0.14732 | |
150 | 0.10857 | 0.09741 | 0.10019 | 0.10288 | 0.09863 | 0.09863 | 0.09734 | 0.08802 | 0.09076 | 0.07459 | 0.08395 | 0.09198 | |
200 | 0.07946 | 0.07352 | 0.07491 | 0.07641 | 0.07423 | 0.07423 | 0.07349 | 0.06849 | 0.06987 | 0.05999 | 0.06595 | 0.07077 | |
250 | 0.06981 | 0.06537 | 0.06641 | 0.06756 | 0.06596 | 0.06596 | 0.06535 | 0.06166 | 0.06269 | 0.05501 | 0.05969 | 0.06348 | |
300 | 0.05926 | 0.05584 | 0.05660 | 0.05752 | 0.05629 | 0.05629 | 0.05583 | 0.05297 | 0.05373 | 0.04757 | 0.05137 | 0.05435 | |
400 | 0.03273 | 0.03177 | 0.03193 | 0.03226 | 0.03187 | 0.03187 | 0.03177 | 0.03093 | 0.03108 | 0.02899 | 0.03033 | 0.03129 | |
0.99 | 50 | 2.90423 | 1.51650 | 1.83488 | 0.41766 | 0.65613 | 0.51551 | 0.50512 | 0.23699 | 0.29268 | 0.22018 | 0.21521 | 0.10493 |
100 | 0.92609 | 0.53679 | 0.67077 | 0.50122 | 0.45370 | 0.44848 | 0.43317 | 0.20899 | 0.30452 | 0.19153 | 0.22778 | 0.22738 | |
150 | 0.51184 | 0.33516 | 0.40087 | 0.38637 | 0.32999 | 0.32965 | 0.31630 | 0.19304 | 0.24986 | 0.16783 | 0.19875 | 0.23356 | |
200 | 0.35921 | 0.25431 | 0.29190 | 0.29619 | 0.26033 | 0.26033 | 0.25014 | 0.17194 | 0.20673 | 0.14042 | 0.16928 | 0.20104 | |
250 | 0.29711 | 0.21978 | 0.24665 | 0.25231 | 0.22602 | 0.22602 | 0.21714 | 0.15876 | 0.18423 | 0.12803 | 0.15371 | 0.18264 | |
300 | 0.26960 | 0.20616 | 0.22816 | 0.23364 | 0.21196 | 0.21196 | 0.20448 | 0.15572 | 0.17678 | 0.12623 | 0.15029 | 0.17711 | |
400 | 0.13770 | 0.11897 | 0.12393 | 0.12817 | 0.12082 | 0.12082 | 0.11883 | 0.10323 | 0.10813 | 0.08401 | 0.09745 | 0.10979 |
PRRE | PLE | PMTPLE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | PMLE | ||||||||||||
0.85 | 50 | 0.08701 | 0.08415 | 0.08474 | 0.08428 | 0.08228 | 0.08228 | 0.08228 | 0.07962 | 0.08019 | 0.07507 | 0.07823 | 0.07947 |
100 | 0.02843 | 0.02816 | 0.02822 | 0.02819 | 0.02799 | 0.02799 | 0.02799 | 0.02774 | 0.02780 | 0.02727 | 0.02761 | 0.02773 | |
150 | 0.01670 | 0.01660 | 0.01662 | 0.01662 | 0.01653 | 0.01653 | 0.01653 | 0.01644 | 0.01646 | 0.01626 | 0.01639 | 0.01648 | |
200 | 0.01203 | 0.01198 | 0.01199 | 0.01199 | 0.01195 | 0.01195 | 0.01195 | 0.01191 | 0.01192 | 0.01182 | 0.01188 | 0.01190 | |
250 | 0.01004 | 0.01001 | 0.01002 | 0.01002 | 0.00999 | 0.00999 | 0.00999 | 0.00996 | 0.00996 | 0.00990 | 0.00994 | 0.00996 | |
300 | 0.00915 | 0.00912 | 0.00913 | 0.00913 | 0.00910 | 0.00910 | 0.00910 | 0.00908 | 0.00908 | 0.00903 | 0.00906 | 0.00908 | |
400 | 0.00508 | 0.00507 | 0.00507 | 0.00507 | 0.00507 | 0.00507 | 0.00507 | 0.00506 | 0.00506 | 0.00505 | 0.00506 | 0.00506 | |
0.90 | 50 | 0.07791 | 0.07528 | 0.07592 | 0.07572 | 0.07375 | 0.07375 | 0.07375 | 0.07130 | 0.07190 | 0.06729 | 0.07018 | 0.07096 |
100 | 0.03374 | 0.03317 | 0.03330 | 0.03331 | 0.03282 | 0.03282 | 0.03282 | 0.03228 | 0.03240 | 0.03126 | 0.03199 | 0.03228 | |
150 | 0.02611 | 0.02581 | 0.02588 | 0.02590 | 0.02564 | 0.02564 | 0.02564 | 0.02536 | 0.02542 | 0.02480 | 0.02521 | 0.02530 | |
200 | 0.01143 | 0.01137 | 0.01139 | 0.01139 | 0.01134 | 0.01134 | 0.01134 | 0.01129 | 0.01130 | 0.01120 | 0.01127 | 0.01132 | |
250 | 0.01052 | 0.01047 | 0.01049 | 0.01049 | 0.01045 | 0.01045 | 0.01045 | 0.01041 | 0.01042 | 0.01033 | 0.01039 | 0.01041 | |
300 | 0.00773 | 0.00771 | 0.00772 | 0.00772 | 0.00770 | 0.00770 | 0.00770 | 0.00767 | 0.00768 | 0.00763 | 0.00766 | 0.00768 | |
400 | 0.00613 | 0.00612 | 0.00612 | 0.00612 | 0.00611 | 0.00611 | 0.00611 | 0.00610 | 0.00610 | 0.00607 | 0.00609 | 0.00610 | |
0.95 | 50 | 0.22924 | 0.20445 | 0.21130 | 0.20646 | 0.19009 | 0.19009 | 0.19009 | 0.16878 | 0.17493 | 0.14596 | 0.16179 | 0.16588 |
100 | 0.07318 | 0.07065 | 0.07124 | 0.07099 | 0.06916 | 0.06916 | 0.06916 | 0.06675 | 0.06732 | 0.06257 | 0.06557 | 0.06642 | |
150 | 0.04282 | 0.04196 | 0.04214 | 0.04216 | 0.04143 | 0.04143 | 0.04143 | 0.04060 | 0.04077 | 0.03900 | 0.04014 | 0.04050 | |
200 | 0.02881 | 0.02840 | 0.02848 | 0.02849 | 0.02814 | 0.02814 | 0.02814 | 0.02775 | 0.02783 | 0.02694 | 0.02752 | 0.02768 | |
250 | 0.02430 | 0.02402 | 0.02407 | 0.02407 | 0.02384 | 0.02384 | 0.02384 | 0.02357 | 0.02362 | 0.02300 | 0.02340 | 0.02352 | |
300 | 0.02043 | 0.02022 | 0.02025 | 0.02025 | 0.02008 | 0.02008 | 0.02008 | 0.01987 | 0.01991 | 0.01943 | 0.01974 | 0.01984 | |
400 | 0.01185 | 0.01178 | 0.01180 | 0.01180 | 0.01174 | 0.01174 | 0.01174 | 0.01168 | 0.01169 | 0.01155 | 0.01164 | 0.01167 | |
0.99 | 50 | 1.06803 | 0.67705 | 0.82267 | 0.62114 | 0.48609 | 0.46723 | 0.46723 | 0.26336 | 0.34949 | 0.25867 | 0.27559 | 0.20956 |
100 | 0.33953 | 0.28229 | 0.30176 | 0.29023 | 0.25408 | 0.25405 | 0.25405 | 0.20759 | 0.22432 | 0.17519 | 0.19984 | 0.20337 | |
150 | 0.18695 | 0.16795 | 0.17346 | 0.17254 | 0.15746 | 0.15746 | 0.15746 | 0.14072 | 0.14576 | 0.12185 | 0.13537 | 0.13851 | |
200 | 0.13293 | 0.12331 | 0.12575 | 0.12531 | 0.11757 | 0.11757 | 0.11757 | 0.10877 | 0.11107 | 0.09651 | 0.10511 | 0.10789 | |
250 | 0.10748 | 0.10102 | 0.10250 | 0.10225 | 0.09698 | 0.09698 | 0.09698 | 0.09098 | 0.09239 | 0.08154 | 0.08813 | 0.08990 | |
300 | 0.10041 | 0.09500 | 0.09624 | 0.09598 | 0.09159 | 0.09159 | 0.09159 | 0.08654 | 0.08772 | 0.07838 | 0.08410 | 0.08582 | |
400 | 0.04886 | 0.04741 | 0.04773 | 0.04782 | 0.04654 | 0.04654 | 0.04654 | 0.04514 | 0.04545 | 0.04257 | 0.04441 | 0.04503 |
PRRE | PLE | PMTPLE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | PMLE | ||||||||||||
0.85 | 50 | 0.80197 | 0.57417 | 0.68879 | 0.45770 | 0.49293 | 0.49212 | 0.48369 | 0.36389 | 0.43277 | 0.31065 | 0.33939 | 0.34642 |
100 | 0.22659 | 0.20213 | 0.21501 | 0.20324 | 0.19864 | 0.19864 | 0.19746 | 0.17866 | 0.18947 | 0.15702 | 0.17117 | 0.17976 | |
150 | 0.14479 | 0.13280 | 0.13985 | 0.13615 | 0.13310 | 0.13310 | 0.13164 | 0.12328 | 0.12915 | 0.11528 | 0.12126 | 0.12756 | |
200 | 0.07315 | 0.06990 | 0.07198 | 0.07134 | 0.07036 | 0.07036 | 0.06979 | 0.06784 | 0.06946 | 0.06669 | 0.06775 | 0.06954 | |
250 | 0.05306 | 0.05108 | 0.05232 | 0.05200 | 0.05131 | 0.05131 | 0.05102 | 0.04984 | 0.05075 | 0.04913 | 0.04973 | 0.05038 | |
300 | 0.03916 | 0.03820 | 0.03884 | 0.03872 | 0.03838 | 0.03838 | 0.03820 | 0.03765 | 0.03813 | 0.03749 | 0.03770 | 0.03810 | |
400 | 0.03175 | 0.03097 | 0.03151 | 0.03149 | 0.03121 | 0.03121 | 0.03097 | 0.03056 | 0.03101 | 0.03040 | 0.03062 | 0.03116 | |
0.90 | 50 | 1.12141 | 0.76514 | 0.93949 | 0.55861 | 0.61347 | 0.61154 | 0.59975 | 0.42040 | 0.52349 | 0.35882 | 0.38761 | 0.38033 |
100 | 0.29695 | 0.25809 | 0.27788 | 0.25954 | 0.25113 | 0.25113 | 0.24901 | 0.21869 | 0.23584 | 0.18261 | 0.20498 | 0.21982 | |
150 | 0.18946 | 0.17102 | 0.18126 | 0.17548 | 0.17053 | 0.17053 | 0.16850 | 0.15471 | 0.16374 | 0.13882 | 0.14961 | 0.15908 | |
200 | 0.09711 | 0.09123 | 0.09512 | 0.09452 | 0.09260 | 0.09260 | 0.09114 | 0.08754 | 0.09093 | 0.08428 | 0.08740 | 0.09052 | |
250 | 0.07230 | 0.06897 | 0.07116 | 0.07087 | 0.06967 | 0.06967 | 0.06895 | 0.06687 | 0.06874 | 0.06515 | 0.06681 | 0.06819 | |
300 | 0.05186 | 0.05018 | 0.05131 | 0.05125 | 0.05063 | 0.05063 | 0.05017 | 0.04919 | 0.05017 | 0.04836 | 0.04922 | 0.05010 | |
400 | 0.04217 | 0.04090 | 0.04176 | 0.04176 | 0.04127 | 0.04127 | 0.04089 | 0.04013 | 0.04091 | 0.03928 | 0.04010 | 0.04095 | |
0.95 | 50 | 2.85687 | 1.75849 | 2.22230 | 0.70323 | 0.96611 | 0.93172 | 0.92351 | 0.58271 | 0.75047 | 0.53481 | 0.52713 | 0.45352 |
100 | 0.74779 | 0.56633 | 0.66820 | 0.53800 | 0.54028 | 0.54025 | 0.53167 | 0.39950 | 0.48332 | 0.32826 | 0.37892 | 0.39633 | |
150 | 0.31988 | 0.28327 | 0.30162 | 0.28705 | 0.27726 | 0.27726 | 0.27633 | 0.24573 | 0.26206 | 0.20753 | 0.23073 | 0.24526 | |
200 | 0.24748 | 0.22899 | 0.23656 | 0.22655 | 0.22247 | 0.22247 | 0.22238 | 0.20577 | 0.21278 | 0.17208 | 0.19171 | 0.20201 | |
250 | 0.20025 | 0.18557 | 0.19291 | 0.18731 | 0.18376 | 0.18376 | 0.18356 | 0.17028 | 0.17716 | 0.14818 | 0.16261 | 0.17105 | |
300 | 0.18864 | 0.17507 | 0.18196 | 0.17711 | 0.17370 | 0.17370 | 0.17348 | 0.16117 | 0.16766 | 0.14071 | 0.15420 | 0.16179 | |
400 | 0.09557 | 0.09271 | 0.09385 | 0.09290 | 0.09189 | 0.09189 | 0.09189 | 0.08921 | 0.09029 | 0.08241 | 0.08661 | 0.08905 | |
0.99 | 50 | 13.77855 | 7.86315 | 9.75343 | 1.40175 | 1.57778 | 1.03150 | 1.03115 | 0.64196 | 0.79388 | 0.66938 | 0.56857 | 0.69815 |
100 | 3.52336 | 2.14009 | 2.79976 | 0.86163 | 1.20927 | 1.15367 | 1.15129 | 0.62455 | 0.91354 | 0.58597 | 0.59507 | 0.26733 | |
150 | 1.46477 | 1.01114 | 1.24147 | 0.90276 | 0.83549 | 0.83476 | 0.83300 | 0.54535 | 0.70626 | 0.45521 | 0.49879 | 0.44746 | |
200 | 1.12699 | 0.83745 | 0.98329 | 0.77492 | 0.72988 | 0.72981 | 0.72923 | 0.52049 | 0.63366 | 0.39522 | 0.46612 | 0.45326 | |
250 | 0.94826 | 0.73310 | 0.84070 | 0.69584 | 0.66053 | 0.66053 | 0.66008 | 0.49464 | 0.58280 | 0.36218 | 0.44110 | 0.44895 | |
300 | 0.87367 | 0.68528 | 0.77701 | 0.64652 | 0.61715 | 0.61715 | 0.61708 | 0.47137 | 0.54672 | 0.34603 | 0.41658 | 0.42715 | |
400 | 0.41535 | 0.36723 | 0.38799 | 0.36640 | 0.35024 | 0.35024 | 0.35024 | 0.30768 | 0.32671 | 0.23729 | 0.27760 | 0.29651 |
PRRE | PLE | PMTPLE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | PMLE | ||||||||||||
0.85 | 50 | 0.28086 | 0.23937 | 0.25257 | 0.25645 | 0.24056 | 0.24056 | 0.23835 | 0.20345 | 0.21592 | 0.14606 | 0.16879 | 0.20730 |
100 | 0.07930 | 0.07608 | 0.07661 | 0.07798 | 0.07625 | 0.07625 | 0.07608 | 0.07312 | 0.07365 | 0.06171 | 0.06773 | 0.07359 | |
150 | 0.05237 | 0.05098 | 0.05117 | 0.05182 | 0.05106 | 0.05106 | 0.05098 | 0.04970 | 0.04990 | 0.04425 | 0.04719 | 0.04994 | |
200 | 0.02576 | 0.02546 | 0.02548 | 0.02565 | 0.02547 | 0.02547 | 0.02546 | 0.02517 | 0.02520 | 0.02372 | 0.02454 | 0.02521 | |
250 | 0.01995 | 0.01976 | 0.01978 | 0.01988 | 0.01977 | 0.01977 | 0.01976 | 0.01958 | 0.01960 | 0.01866 | 0.01918 | 0.01961 | |
300 | 0.01449 | 0.01440 | 0.01441 | 0.01446 | 0.01440 | 0.01440 | 0.01440 | 0.01431 | 0.01432 | 0.01385 | 0.01412 | 0.01433 | |
400 | 0.01137 | 0.01131 | 0.01131 | 0.01135 | 0.01131 | 0.01131 | 0.01131 | 0.01125 | 0.01125 | 0.01092 | 0.01111 | 0.01127 | |
0.90 | 50 | 0.39222 | 0.31824 | 0.34398 | 0.34611 | 0.31887 | 0.31887 | 0.31544 | 0.25500 | 0.27880 | 0.18136 | 0.20674 | 0.26062 |
100 | 0.11072 | 0.10457 | 0.10573 | 0.10825 | 0.10487 | 0.10487 | 0.10456 | 0.09893 | 0.10008 | 0.07967 | 0.08944 | 0.09978 | |
150 | 0.07117 | 0.06865 | 0.06903 | 0.07020 | 0.06877 | 0.06877 | 0.06864 | 0.06631 | 0.06669 | 0.05714 | 0.06192 | 0.06670 | |
200 | 0.03428 | 0.03375 | 0.03379 | 0.03409 | 0.03376 | 0.03376 | 0.03375 | 0.03323 | 0.03327 | 0.03067 | 0.03211 | 0.03331 | |
250 | 0.02650 | 0.02619 | 0.02621 | 0.02639 | 0.02620 | 0.02620 | 0.02619 | 0.02589 | 0.02591 | 0.02437 | 0.02523 | 0.02593 | |
300 | 0.01859 | 0.01845 | 0.01845 | 0.01854 | 0.01845 | 0.01845 | 0.01845 | 0.01830 | 0.01831 | 0.01755 | 0.01798 | 0.01833 | |
400 | 0.01513 | 0.01502 | 0.01502 | 0.01509 | 0.01502 | 0.01502 | 0.01502 | 0.01491 | 0.01491 | 0.01433 | 0.01466 | 0.01493 | |
0.95 | 50 | 1.00552 | 0.67187 | 0.81047 | 0.73113 | 0.63010 | 0.63010 | 0.61868 | 0.39638 | 0.50501 | 0.31232 | 0.32656 | 0.38278 |
100 | 0.27364 | 0.24175 | 0.25108 | 0.25643 | 0.24316 | 0.24316 | 0.24164 | 0.21341 | 0.22251 | 0.15479 | 0.18131 | 0.21736 | |
150 | 0.11715 | 0.11097 | 0.11212 | 0.11475 | 0.11127 | 0.11127 | 0.11096 | 0.10528 | 0.10643 | 0.08599 | 0.09569 | 0.10612 | |
200 | 0.09170 | 0.08814 | 0.08872 | 0.09028 | 0.08833 | 0.08833 | 0.08813 | 0.08484 | 0.08542 | 0.07176 | 0.07878 | 0.08528 | |
250 | 0.07554 | 0.07317 | 0.07352 | 0.07459 | 0.07331 | 0.07331 | 0.07317 | 0.07098 | 0.07133 | 0.06155 | 0.06674 | 0.07135 | |
300 | 0.07209 | 0.06993 | 0.07024 | 0.07122 | 0.07005 | 0.07005 | 0.06993 | 0.06793 | 0.06824 | 0.05924 | 0.06400 | 0.06829 | |
400 | 0.03427 | 0.03378 | 0.03383 | 0.03409 | 0.03380 | 0.03380 | 0.03378 | 0.03332 | 0.03337 | 0.03101 | 0.03232 | 0.03339 | |
0.99 | 50 | 4.75108 | 2.69461 | 3.39960 | 1.10682 | 1.17844 | 1.10666 | 1.10119 | 0.60571 | 0.81190 | 0.57948 | 0.51748 | 0.43081 |
100 | 1.25466 | 0.83275 | 1.02009 | 0.90362 | 0.76519 | 0.76498 | 0.75562 | 0.46510 | 0.61340 | 0.36067 | 0.39647 | 0.43821 | |
150 | 0.53003 | 0.42140 | 0.46291 | 0.48222 | 0.42280 | 0.42280 | 0.41828 | 0.32837 | 0.36704 | 0.23605 | 0.26959 | 0.33750 | |
200 | 0.40430 | 0.33756 | 0.36083 | 0.37631 | 0.34013 | 0.34013 | 0.33697 | 0.27955 | 0.30190 | 0.19201 | 0.23080 | 0.28718 | |
250 | 0.34735 | 0.29931 | 0.31500 | 0.32730 | 0.30161 | 0.30161 | 0.29907 | 0.25704 | 0.27231 | 0.17664 | 0.21539 | 0.26301 | |
300 | 0.31563 | 0.27373 | 0.28676 | 0.29818 | 0.27579 | 0.27579 | 0.27352 | 0.23685 | 0.24955 | 0.16429 | 0.19818 | 0.24186 | |
400 | 0.15906 | 0.14864 | 0.15084 | 0.15536 | 0.14910 | 0.14910 | 0.14863 | 0.13903 | 0.14120 | 0.10799 | 0.12401 | 0.14032 |
PRRE | PLE | PMTPLE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | PMLE | ||||||||||||
0.85 | 50 | 0.10046 | 0.09758 | 0.09850 | 0.09872 | 0.09638 | 0.09638 | 0.09638 | 0.09368 | 0.09456 | 0.08595 | 0.09036 | 0.09287 |
100 | 0.03002 | 0.02980 | 0.02987 | 0.02992 | 0.02971 | 0.02971 | 0.02971 | 0.02951 | 0.02958 | 0.02887 | 0.02926 | 0.02948 | |
150 | 0.01915 | 0.01907 | 0.01910 | 0.01912 | 0.01903 | 0.01903 | 0.01903 | 0.01895 | 0.01898 | 0.01871 | 0.01885 | 0.01896 | |
200 | 0.00974 | 0.00972 | 0.00972 | 0.00973 | 0.00971 | 0.00971 | 0.00971 | 0.00969 | 0.00970 | 0.00965 | 0.00968 | 0.00970 | |
250 | 0.00756 | 0.00754 | 0.00755 | 0.00755 | 0.00754 | 0.00754 | 0.00754 | 0.00753 | 0.00754 | 0.00752 | 0.00753 | 0.00753 | |
300 | 0.00536 | 0.00535 | 0.00535 | 0.00535 | 0.00535 | 0.00535 | 0.00535 | 0.00534 | 0.00535 | 0.00534 | 0.00534 | 0.00535 | |
400 | 0.00439 | 0.00439 | 0.00439 | 0.00439 | 0.00439 | 0.00439 | 0.00439 | 0.00438 | 0.00438 | 0.00438 | 0.00438 | 0.00439 | |
0.90 | 50 | 0.14216 | 0.13574 | 0.13791 | 0.13835 | 0.13314 | 0.13314 | 0.13314 | 0.12716 | 0.12923 | 0.11181 | 0.12031 | 0.12570 |
100 | 0.03968 | 0.03922 | 0.03936 | 0.03948 | 0.03902 | 0.03902 | 0.03902 | 0.03858 | 0.03872 | 0.03708 | 0.03799 | 0.03854 | |
150 | 0.02554 | 0.02535 | 0.02541 | 0.02546 | 0.02527 | 0.02527 | 0.02527 | 0.02509 | 0.02515 | 0.02448 | 0.02485 | 0.02508 | |
200 | 0.01316 | 0.01312 | 0.01314 | 0.01315 | 0.01311 | 0.01311 | 0.01311 | 0.01307 | 0.01308 | 0.01295 | 0.01302 | 0.01308 | |
250 | 0.00980 | 0.00977 | 0.00978 | 0.00979 | 0.00977 | 0.00977 | 0.00977 | 0.00974 | 0.00975 | 0.00968 | 0.00972 | 0.00975 | |
300 | 0.00700 | 0.00699 | 0.00699 | 0.00700 | 0.00698 | 0.00698 | 0.00698 | 0.00697 | 0.00698 | 0.00694 | 0.00696 | 0.00698 | |
400 | 0.00551 | 0.00550 | 0.00550 | 0.00550 | 0.00550 | 0.00550 | 0.00550 | 0.00549 | 0.00549 | 0.00547 | 0.00548 | 0.00550 | |
0.95 | 50 | 0.35674 | 0.31622 | 0.33179 | 0.33064 | 0.29985 | 0.29985 | 0.29985 | 0.26510 | 0.27906 | 0.20885 | 0.23590 | 0.25514 |
100 | 0.09696 | 0.09419 | 0.09511 | 0.09537 | 0.09309 | 0.09309 | 0.09309 | 0.09043 | 0.09133 | 0.08250 | 0.08719 | 0.08994 | |
150 | 0.04210 | 0.04160 | 0.04176 | 0.04188 | 0.04139 | 0.04139 | 0.04139 | 0.04090 | 0.04105 | 0.03926 | 0.04025 | 0.04083 | |
200 | 0.03497 | 0.03467 | 0.03475 | 0.03483 | 0.03453 | 0.03453 | 0.03453 | 0.03424 | 0.03432 | 0.03316 | 0.03382 | 0.03415 | |
250 | 0.02700 | 0.02681 | 0.02687 | 0.02691 | 0.02673 | 0.02673 | 0.02673 | 0.02654 | 0.02660 | 0.02585 | 0.02628 | 0.02649 | |
300 | 0.02463 | 0.02447 | 0.02452 | 0.02456 | 0.02440 | 0.02440 | 0.02440 | 0.02424 | 0.02428 | 0.02363 | 0.02400 | 0.02419 | |
400 | 0.01224 | 0.01220 | 0.01221 | 0.01222 | 0.01218 | 0.01218 | 0.01218 | 0.01214 | 0.01215 | 0.01200 | 0.01209 | 0.01214 | |
0.99 | 50 | 1.69802 | 1.11129 | 1.38139 | 1.14727 | 0.83216 | 0.83040 | 0.83040 | 0.51670 | 0.67948 | 0.43894 | 0.45385 | 0.36404 |
100 | 0.45699 | 0.39560 | 0.42234 | 0.42134 | 0.37421 | 0.37421 | 0.37421 | 0.32145 | 0.34541 | 0.24669 | 0.28641 | 0.30745 | |
150 | 0.18779 | 0.17653 | 0.18058 | 0.18293 | 0.17205 | 0.17205 | 0.17205 | 0.16156 | 0.16541 | 0.13635 | 0.15043 | 0.15828 | |
200 | 0.14978 | 0.14319 | 0.14542 | 0.14689 | 0.14042 | 0.14042 | 0.14042 | 0.13414 | 0.13630 | 0.11644 | 0.12675 | 0.13213 | |
250 | 0.12425 | 0.11984 | 0.12127 | 0.12222 | 0.11791 | 0.11791 | 0.11791 | 0.11366 | 0.11506 | 0.10064 | 0.10836 | 0.11229 | |
300 | 0.11627 | 0.11235 | 0.11360 | 0.11446 | 0.11062 | 0.11062 | 0.11062 | 0.10684 | 0.10806 | 0.09510 | 0.10203 | 0.10561 | |
400 | 0.05642 | 0.05549 | 0.05578 | 0.05607 | 0.05511 | 0.05511 | 0.05511 | 0.05419 | 0.05448 | 0.05104 | 0.05297 | 0.05393 |
Estimator | Biasing Parameter | Intercept | MSE | ||||||
---|---|---|---|---|---|---|---|---|---|
PMLE | - | 2.09378 | 0.00000 | −0.10527 | 0.06779 | −0.03462 | 0.00105 | 0.21088 | 6.27306 |
PRRE | 0.86573 | −0.00001 | −0.06838 | 0.04946 | −0.01300 | 0.00185 | 0.26679 | 0.95335 | |
0.87691 | −0.00001 | −0.06872 | 0.04963 | −0.01320 | 0.00184 | 0.26629 | 0.97892 | ||
0.34802 | −0.00001 | −0.05218 | 0.04128 | −0.00365 | 0.00218 | 0.28910 | 0.15981 | ||
PLE | 0.29910 | −0.00001 | −0.05051 | 0.04041 | −0.00271 | 0.00221 | 0.29093 | 0.13671 | |
0.29910 | −0.00001 | −0.05051 | 0.04041 | −0.00271 | 0.00221 | 0.29093 | 0.13671 | ||
PALE | 0.29910 | −0.00001 | −0.05051 | 0.04041 | −0.00271 | 0.00221 | 0.29093 | 0.13671 | |
PMTPLE | −0.11367 | −0.00001 | −0.03791 | 0.03411 | 0.00463 | 0.00247 | 0.30934 | 0.04146 | |
−0.10463 | −0.00001 | −0.03819 | 0.03424 | 0.00447 | 0.00247 | 0.30893 | 0.03827 | ||
0.03867 | −0.00001 | −0.04256 | 0.03643 | 0.00192 | 0.00237 | 0.30254 | 0.01931 | ||
−0.75974 | −0.00002 | −0.01820 | 0.02425 | 0.01612 | 0.00289 | 0.33815 | 0.88043 | ||
−0.52938 | −0.00002 | −0.02523 | 0.02776 | 0.01202 | 0.00274 | 0.32788 | 0.44298 |
Estimator | Biasing Parameter | Intercept | MSE | |||
---|---|---|---|---|---|---|
PMLE | - | 1.20525 | 0.39634 | 0.12524 | −0.80482 | 1.22355 |
PRRE | 1.19475 | 0.13945 | 0.15493 | −0.56726 | 0.57949 | |
1.19993 | 0.23078 | 0.15145 | −0.66065 | 0.92717 | ||
1.19795 | 0.19001 | 0.15443 | −0.62082 | 0.76366 | ||
PLE | 1.19393 | 0.12888 | 0.15445 | −0.55530 | 0.54352 | |
1.19393 | 0.12888 | 0.15445 | −0.55530 | 0.54352 | ||
PALE | 1.19393 | 0.12888 | 0.15445 | −0.55530 | 0.54352 | |
PMTPLE | 1.18350 | −0.11742 | 0.18135 | −0.32552 | 0.60474 | |
1.18895 | 0.01122 | 0.16730 | −0.44553 | 0.49054 | ||
1.18884 | 0.00859 | 0.16759 | −0.44307 | 0.49107 | ||
1.18642 | −0.04861 | 0.17384 | −0.38970 | 0.52129 | ||
1.18608 | −0.05654 | 0.17470 | −0.38231 | 0.52828 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelwahab, M.M.; Abonazel, M.R.; Hammad, A.T.; El-Masry, A.M. Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model. Axioms 2024, 13, 46. https://doi.org/10.3390/axioms13010046
Abdelwahab MM, Abonazel MR, Hammad AT, El-Masry AM. Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model. Axioms. 2024; 13(1):46. https://doi.org/10.3390/axioms13010046
Chicago/Turabian StyleAbdelwahab, Mahmoud M., Mohamed R. Abonazel, Ali T. Hammad, and Amera M. El-Masry. 2024. "Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model" Axioms 13, no. 1: 46. https://doi.org/10.3390/axioms13010046
APA StyleAbdelwahab, M. M., Abonazel, M. R., Hammad, A. T., & El-Masry, A. M. (2024). Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model. Axioms, 13(1), 46. https://doi.org/10.3390/axioms13010046