Exact Solutions of the Stochastic Conformable Broer–Kaup Equations
Abstract
:1. Introduction
2. Definition and Features of Conformable Derivative
- Let functions and that are differentiable with respect to be in the range . Hence, the equation that can satisfy all real numbers , is as follows:
- is any constant providing the following equation:
3. Introduction to the Modified Exponential Function Method
4. Introduction of the Processing Steps of the Generalized Kudryashov Method
5. An Application of the Modified Exponential Function Method
6. Analysis of Wave Solutions of Mathematical Model with the Generalized Kudryashov Method
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, J.H. Comparison of homotopy perturbation method and homotopy analysis method. Appl. Math. Comput. 2004, 156, 527–539. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A reliable modification of Adomian decomposition method. Appl. Math. Comput. 1999, 102, 77–86. [Google Scholar] [CrossRef]
- Gurefe, N.; Kocer, E.G.; Gurefe, Y. Chebyshev-Tau method for the linear Klein-Gordon equation. Int. J. Phys. Sci. 2012, 7, 5723–5728. [Google Scholar]
- Hwang, J.H.; Lu, C.C. A semi-analytical method for analyzing the tunnel water inflow. Tunn. Undergr. Space Technol. 2007, 22, 39–46. [Google Scholar] [CrossRef]
- Selvadurai, A.P.S. The analytical method in geomechanics. Appl. Mech. Rev. 2007, 60, 87–106. [Google Scholar] [CrossRef]
- Djellab, N.; Boureghda, A. A moving boundary model for oxygen diffusion in a sick cell. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Gurefe, Y. The generalized Kudryashov method for the nonlinear fractional partial diferential equations with the beta-derivative. Rev. Mex. Fis. 2020, 66, 771–781. [Google Scholar] [CrossRef]
- Yel, G.; Baskonus, H.M.; Bulut, H. Novel archetypes of new coupled Konno-Oono equation by using sine-Gordon expansion method. Opt. Quantum Electron. 2017, 49, 285. [Google Scholar] [CrossRef]
- Liu, S.; Fu, Z.; Liu, S.; Zhao, Q. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 2001, 289, 69–74. [Google Scholar] [CrossRef]
- Mahmud, A.A.; Tanriverdi, T.; Muhamad, K.A. Exact traveling wave solutions for (2+1)-dimensional Konopelchenko-Dubrovsky equation by using the hyperbolic trigonometric functions methods. Int. J. Math. Comput. Eng. 2023, 1, 11–24. [Google Scholar] [CrossRef]
- He, J.H.; Abdou, M.A. New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Soliton Fract. 2007, 34, 1421–1429. [Google Scholar] [CrossRef]
- El-Wakil, S.A.; Abdou, M.A. New exact travelling wave solutions using modified extended tanh-function method. Chaos Soliton Fract. 2007, 31, 840–852. [Google Scholar] [CrossRef]
- Shen, G.; Sun, Y.; Xiong, Y. New travelling-wave solutions for Dodd-Bullough equation. J. Appl. Math. 2013, 2013, 364718. [Google Scholar] [CrossRef]
- Gurefe, Y.; Pandir, Y.; Akturk, T. On the nonlinear mathematical model representing the coriolis effect. Math. Probl. Eng. 2022, 2022, 2504907. [Google Scholar] [CrossRef]
- Attaullah; Shakeel, M.; Shah, N.A.; Chung, J.D. Modified exp-function method to find exact solutions of ionic currents along microtubules. Mathematics 2022, 10, 851. [Google Scholar] [CrossRef]
- Pandir, Y.; Akturk, T.; Gurefe, Y.; Juya, H. The modified exponential function method for beta time fractional Biswas-Arshed equation. Adv. Math. Phys. 2023, 2023, 1091355. [Google Scholar] [CrossRef]
- Al-Askar, F.M.; Cesarano, C.; Mohammed, W.W. Effects of the Wiener process and beta derivative on the exact solutions of the Kadomtsev-Petviashvili equation. Axioms 2023, 12, 748. [Google Scholar] [CrossRef]
- Alshammari, S.; Mohammed, W.W.; Samura, S.K.; Faleh, S. The analytical solutions for the stochastic-fractional Broer–Kaup equations. Math. Probl. Eng. 2022, 2022, 6895875. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Abu-Shady, M.; Kaabar, M.K. A generalized definition of the fractional derivative with applications. Math. Probl. Eng. 2021, 2021, 9444803. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasmin, H.; Pandir, Y.; Akturk, T.; Gurefe, Y. Exact Solutions of the Stochastic Conformable Broer–Kaup Equations. Axioms 2023, 12, 889. https://doi.org/10.3390/axioms12090889
Yasmin H, Pandir Y, Akturk T, Gurefe Y. Exact Solutions of the Stochastic Conformable Broer–Kaup Equations. Axioms. 2023; 12(9):889. https://doi.org/10.3390/axioms12090889
Chicago/Turabian StyleYasmin, Humaira, Yusuf Pandir, Tolga Akturk, and Yusuf Gurefe. 2023. "Exact Solutions of the Stochastic Conformable Broer–Kaup Equations" Axioms 12, no. 9: 889. https://doi.org/10.3390/axioms12090889
APA StyleYasmin, H., Pandir, Y., Akturk, T., & Gurefe, Y. (2023). Exact Solutions of the Stochastic Conformable Broer–Kaup Equations. Axioms, 12(9), 889. https://doi.org/10.3390/axioms12090889