An Approach for Approximating Analytical Solutions of the Navier-Stokes Time-Fractional Equation Using the Homotopy Perturbation Sumudu Transform’s Strategy
Abstract
:1. Introduction
2. Revealing Fundamental Notions
2.1. Definition
2.2. Definition
2.2.1. Properties of Riemann–Liouville Fractional Integral Operator
2.2.2. Linearity: [20,30,31]
2.2.3. Scaling Property: [20,30,31]
2.2.4. Connection with Derivatives
2.2.5. Inverse Property
2.2.6. Composition Rule: [2,30]
2.3. Definition
2.4. Definition
2.5. Some Properties of the Mittag-Leffler Function
2.5.1. Fractional Derivatives: [2,30]
2.5.2. Series Convergence: [2,30]
2.5.3. Special Cases: [2,30]
2.6. Definition
2.6.1. Constant Function
2.6.2. Exponential Function: [33,34]
2.6.3. Exponential Decay: [33,34]
2.6.4. Linearity: [25,33,34]
2.6.5. Sumudu Transform and Fractional Caputo Derivative
3. Homotopy Perturbation Sumudu Transform Strategy
4. Implementation of the Proposed Technique
4.1. Case: 1
4.2. Case: 2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubnv, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA; Boston, MA, USA, 1999; Volume 6. [Google Scholar]
- Chen, W. Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 2006, 28, 923–929. [Google Scholar] [CrossRef]
- Iqbal, S.; Wei, Y. Recovery of the time-dependent implied volatility of time fractional Black–Scholes equation using linearization technique. J. Inverse Ill-Posed Probl. 2021, 29, 599–610. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Al-Askar, F.M.; Cesarano, C.; El-Morshedy, M. Solitary Wave Solution of a Generalized Fractional–Stochastic Nonlinear Wave Equation for a Liquid with Gas Bubbles. Mathematics 2023, 11, 1692. [Google Scholar] [CrossRef]
- Sene, N. Stokes’ first problem for heated flat plate with Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 2018, 117, 68–75. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Akgül, A.; Baleanu, D. Analysis of the fractional tumour-immune-vitamins model with Mittag-Leffler kernel. Results Phys. 2020, 19, 103559. [Google Scholar] [CrossRef]
- Qureshi, S.; Yusuf, A.; Shaikh, A.A.; Inc, M.; Baleanu, D. Mathematical modeling for adsorption process of dye removal nonlinear equation using power law and exponentially decaying kernels. Chaos 2020, 30, 043106. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equation. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 2007, 31, 1248–1255. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S. Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Model. 2008, 32, 28–39. [Google Scholar] [CrossRef]
- Jafari, H.; Seifi, S. Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2006–2012. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S. The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 2009, 58, 2199–2208. [Google Scholar] [CrossRef]
- Maitama, S.; Zhao, W. Homotopy Perturbation Shehu Transform Method for Solving Fractional Models Arising in Applied Sciences. J. Appl. Math. Comput. Mech. 2021, 20, 71–82. [Google Scholar] [CrossRef]
- Akinyemi, L.; Enol, M.; Huseen, S.N. Modified homotopy methods for generalized fractional perturbed Zakharov–Kuznetsov equation in dusty plasma. Adv. Differ. Equ. 2021, 2021, 1–27. [Google Scholar] [CrossRef]
- Iqbal, S.; Kaabar, M.K.A.; Martinez, F. A Novel Homotopy Perturbation Algorithm Using Laplace Transform for Conformable Partial Differential Equations. Math. Probl. Eng. Theory Methods Appl. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Iqbal, S.; Martínez, F.; Kaabar, M.K.A.; Samei, M.E. A novel Elzaki transform homotopy perturbation method for solving time-fractional non-linear partial differential equations. Bound. Value Probl. 2022, 2022, 1–23. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- Watugala, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems. Integr. Educ. 1993, 24, 35–43. [Google Scholar] [CrossRef]
- Belgacem, F.B.M.; Karaballi, A.A. Sumudu transform fundamental properties investigations and applications. Int. J. Stoch. Anal. 2006, 2006, 91083. [Google Scholar] [CrossRef]
- Muhammed, B.F.B.; Abdullatif, K.A.; Kalla, S.L. Analytical investigations of the Sumudu transform and applications to integral production equations. Math. Probl. Eng. 2003, 2003, 103–118. [Google Scholar]
- Hamed, S.H.M.; Yousif, E.A.; Arbab, A.I. Analytic and Approximate Solutions of the Space-Time Fractional Schrdinger Equations by Homotopy Perturbation Sumudu Transform Method. Abstr. Appl. Anal. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Khader, M.M. Application of homotopy perturbation Sumudu transform method for solving nonlinear fractional heat-like equations. Sci. Iran. 2017, 24, 648–655. [Google Scholar] [CrossRef]
- Jassim, H.K.; Kadmim, H. Fractional Sumudu decomposition method for solving PDEs of fractional order. J. Appl. Comput. Mech. 2021, 7, 302–311. [Google Scholar]
- Ouafoudi, M.; Gao, F. Exact solution of fractional Black-Scholes European option pricing equations. Appl. Math. 2018, 9, 86–100. [Google Scholar] [CrossRef]
- El-Shahed, M.; Salem, A. On the Generalized Navier-Stokes Equations. Appl. Math. Comput. 2003, 156, 287–293. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. The Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177, 488–494. [Google Scholar] [CrossRef]
- Ragab, A.A.; Hemida, K.M.; Mohamed, M.S.; Salam, M.A.A.E. Solution of Time-Fractional Navier-Stokes Equation by Using Homotopy Analysis Method. Gen 2013, 13, 13–21. [Google Scholar]
- Kumar, S.; Kumar, D.; Abbasbandy, S.; Rashidi, M. Analytical solution of fractional Navier–Stokes equation by using modified Laplace decomposition method. Ain Shams Eng. J. 2014, 5, 569–574. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- Wang, K.; Liu, S. A new Sumudu transform iterative method for time-fractional Cauchy reaction–diffusion equation. SpringerPlus 2016, 5, 1–20. [Google Scholar] [CrossRef]
- Alomari, A.; Syam, M.I.; Anakira, N.; Jameel, A. Homotopy Sumudu transform method for solving applications in physics. Results Phys. 2020, 18, 103265. [Google Scholar] [CrossRef]
- Atangana, A.; Kılıçman, A. The use of Sumudu transform for solving certain nonlinear fractional heat-like equations. In Abstract and Applied Analysis; Hindawi: London, UK, 2013; Volume 2013. [Google Scholar]
- Ragab, A.; Hemida, K.; Mohamed, M.; Abd El Salam, M. Solution of time-fractional Navier–Stokes equation by using homotopy analysis method. Gen. Math. Notes 2012, 13, 13–21. [Google Scholar]
r | |||||
---|---|---|---|---|---|
0.6 | |||||
0.8 | |||||
1.0 |
r | |||||
---|---|---|---|---|---|
0.6 | |||||
0.8 | |||||
1.0 |
r | |||||
---|---|---|---|---|---|
0.6 | |||||
0.8 | |||||
1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, S.; Martínez, F. An Approach for Approximating Analytical Solutions of the Navier-Stokes Time-Fractional Equation Using the Homotopy Perturbation Sumudu Transform’s Strategy. Axioms 2023, 12, 1025. https://doi.org/10.3390/axioms12111025
Iqbal S, Martínez F. An Approach for Approximating Analytical Solutions of the Navier-Stokes Time-Fractional Equation Using the Homotopy Perturbation Sumudu Transform’s Strategy. Axioms. 2023; 12(11):1025. https://doi.org/10.3390/axioms12111025
Chicago/Turabian StyleIqbal, Sajad, and Francisco Martínez. 2023. "An Approach for Approximating Analytical Solutions of the Navier-Stokes Time-Fractional Equation Using the Homotopy Perturbation Sumudu Transform’s Strategy" Axioms 12, no. 11: 1025. https://doi.org/10.3390/axioms12111025
APA StyleIqbal, S., & Martínez, F. (2023). An Approach for Approximating Analytical Solutions of the Navier-Stokes Time-Fractional Equation Using the Homotopy Perturbation Sumudu Transform’s Strategy. Axioms, 12(11), 1025. https://doi.org/10.3390/axioms12111025