Investigation of the Oscillatory Properties of Solutions of Differential Equations Using Kneser-Type Criteria
Abstract
:1. Introduction
- (A1)
- is a constant;
- (A2)
- , for , , and ;
- (A3)
- , , and ;
- (A4)
- , where
2. Main Results
- [C1]
- for and ;
- [C2]
- for , , and .
2.1. Monotonic Properties of Solutions in [C1]
2.2. Comparison Theorem
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Alnafisah, Y.; Ahmed, H.M. Neutral delay Hilfer fractional integrodifferential equations with fractional brownian motion. Evol. Equ. Control Theory 2022, 11, 925–937. [Google Scholar] [CrossRef]
- Mofarreh, F.; Khan, A.; Shah, R.; Abdeljabbar, A. A Comparative Analysis of Fractional-Order Fokker–Planck Equation. Symmetry 2023, 15, 430. [Google Scholar] [CrossRef]
- Omar, O.A.; Alnafisah, Y.; Elbarkouky, R.A.; Ahmed, H.M. COVID-19 deterministic and stochastic modelling with optimized daily vaccinations in Saudi Arabia. Results Phys. 2021, 28, 104629. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, H.; Aljahdaly, N.H.; Saeed, A.M.; Shah, R. Probing Families of Optical Soliton Solutions in Fractional Perturbed Radhakrishnan–Kundu–Lakshmanan Model with Improved Versions of Extended Direct Algebraic Method. Fractal Fract. 2023, 7, 512. [Google Scholar] [CrossRef]
- Aronsson, G.; Janfalk, U. On Hele-Shaw flow of power-law fluids. Eur. J. Appl. Math. 1992, 3, 343–366. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, W.-T. Nonoscillation and oscillation: Theory for functional differential equations. In Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 2004; Volume 267. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Erbe, L.H.; Kong, Q.; Zhong, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Academic: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Onose, H. Forced oscillation for functional differential equations of fourth order. Bull. Fac. Sci. Ibaraki Univ. Ser. A 1979, 11, 57–63. [Google Scholar] [CrossRef]
- Grace, S.R.; Agarwal, R.P.; Graef, J.R. Oscillation theorems for fourth order functional differential equations. J. Appl. Math. Comput. 2009, 30, 75–88. [Google Scholar] [CrossRef]
- Wu, F. Existence of eventually positive solutions of fourth order quasilinear differential equations. J. Math. Anal. Appl. 2012, 389, 632–646. [Google Scholar] [CrossRef]
- Kamo, K.I.; Usami, H. Oscillation theorems for fourth order quasilinear ordinary differential equations. Stud. Sci. Math. Hung. 2002, 39, 385–406. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. J. Math. Sci. 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Grace, S.R. On the oscillatory and asymptotic behavior of damping functional differential equations. Math. Jpn. 1991, 36, 220–237. [Google Scholar]
- Saker, S.H.; Pang, P.Y.; Agarwal, R.P. Oscillation theorem for second-order nonlinear functional differential equation with damping. Dyn. Syst. Appl. 2003, 12, 307–322. [Google Scholar]
- Tunc, E.; Kaymaz, A. On oscillation of second-order linear neutral differential equations with damping term. Dyn. Syst. Appl. 2019, 28, 289–301. [Google Scholar] [CrossRef]
- Graef, J.R.; Özdemir, O.; Kaymaz, A.; Tunc, E. Oscillation of damped second-order linear mixed neutral differential equations. Monatsh. Math. 2021, 194, 85–104. [Google Scholar] [CrossRef]
- Jadlovská, J.; Džurina, J. Kneser-type oscillation criteria for second-order half-linear delay differential equations. Appl. Math. Comput. 2020, 380, 125289. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Thandapani, E.; Moaaz, O.; Bazighifan, O. Oscillation of solutions to fourth-order delay differential equations with middle term. Open J. Math. Sci. 2019, 3, 191–197. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, S.; Gao, L. Oscillation criteria for even-order half-linear functional differential equations with damping. Appl. Math. Lett. 2011, 24, 1709–1715. [Google Scholar] [CrossRef]
- Kusano, T.; Naito, M. Comparison theorems for functional-differential equations with deviating arguments. J. Math. Soc. Jpn. 1981, 33, 509–532. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnafisah, Y.; Moaaz, O. Investigation of the Oscillatory Properties of Solutions of Differential Equations Using Kneser-Type Criteria. Axioms 2023, 12, 876. https://doi.org/10.3390/axioms12090876
Alnafisah Y, Moaaz O. Investigation of the Oscillatory Properties of Solutions of Differential Equations Using Kneser-Type Criteria. Axioms. 2023; 12(9):876. https://doi.org/10.3390/axioms12090876
Chicago/Turabian StyleAlnafisah, Yousef, and Osama Moaaz. 2023. "Investigation of the Oscillatory Properties of Solutions of Differential Equations Using Kneser-Type Criteria" Axioms 12, no. 9: 876. https://doi.org/10.3390/axioms12090876
APA StyleAlnafisah, Y., & Moaaz, O. (2023). Investigation of the Oscillatory Properties of Solutions of Differential Equations Using Kneser-Type Criteria. Axioms, 12(9), 876. https://doi.org/10.3390/axioms12090876