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Abstract: In this paper, we investigate sharp coefficient functionals, like initial four sharp coefficient
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majorization results for some non-vanishing holomorphic functions, whose ratios are related to
various domains in the open unit disk.

Keywords: olomorphic functions; tangent domain; Zalcman functional; majorization

MSC: 30C45; 30C50

1. Introduction

Here, in this section, we provide some fundamental and significant concepts for a
better comprehension of the primary results. Starting with the most fundamental definition,
for which we use the symbol A. Let A stand for the family of analytic functions with the
following series representation:

ω(κ) = κ + a2κ2 + a3κ3 + a4κ4 + · · · = κ +
∞

∑
`=2

dnκn, (1)

where
ω(0) = ω′(0)− 1 = 0 and z ∈ Ω := {κ : κ ∈ C and |κ| < 1},

C being the set of complex numbers. Additionally, all univalent functions of family A are
included in the separate family S . In 1916, Biberbach [1] made the coefficient conjecture,
which helped the topic gain popularity as a potential area for further study, although the
concept of function theory was first developed in 1851. This conjuncture was proven
in 1985 by De-Branges [2]. Many of the top academics in the world tried to support or
refute the Bieberbach conjucture between 1916 and 1985. As a result, they discovered
several subfamilies of S family of normalised univalent functions that are connected to
various image domains. The most fundamental and important subclasses of the functions
class S are the S∗ and K, known as families of starlike and convex functions, respectively.
Analytically,

S∗ =
{

ω ∈ S : Re
(

κω′(κ)

ω(κ)

)
> 0

}
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and

K =

{
ω ∈ S : Re

(
(κω′(κ))′

ω′(κ)

)
> 0

}
.

The concept of quasi-subordination between holomorphic functions was first introduced
by Robertson [3] in 1970. Let g1 and g2 are two members of the family A, are connected
to quasi-subordination relationship, mathematically demonstrated by g1 ≺q g2, if there

occurs functions Φ, u ∈ A, so that κω′(κ)
Φ(κ)

is holomorphic in Ω with properties

|Φ(κ)| ≤ 1, |u(κ)| ≤ |κ| and u(0) = 0,

satisfying the relationship

g1(κ) = Φ(κ)g2(u(κ)), κ ∈ Ω.

Moreover, by choosing
u(κ) = κ and Φ(κ) = 1,

we get, at the most, helpful ideas in GFT, known as subordination between holomorphic
functions. Actually, if g2 ∈ S , then for g1, g2 ∈ A/, the relationship of subordination has

g1(κ) ≺ g2(κ)⇔ [g1(Ω) ⊂ g2(Ω) with g1(0) = g2(0)].

By assuming that u(κ) = κ, the above definition reduced to the majorization between
holomorphic functions and is given by

g1(κ)� g2(κ), g1(κ), g2(κ) ∈ A/.

So, g1(κ)� g2(κ), if the function Φ(κ) ∈ Ameets the requirement |Φ(κ)| ≤ 1, such that

g1(κ) = Φ(κ)g2(κ), κ ∈ Ω. (2)

In 1967, MacGregor [4] first proposed this concept. This concept has appeared in numerous
articles. For some recent research on this subject, we refer the readers to see [5–9].

In 1992, Ma and Minda defined [10]

S∗(φ) =
{

ω ∈ A :
κω

′
(κ)

ω(κ)
≺ φ(κ)

}
. (3)

with <(φ) > 0 in Ω, additionally, the function φ maps Ω onto a star-shaped region, and
the image domain is symmetric about the real axis and starlike, with respect to φ(0) = 1
with φ′(0) > 0. The set S∗(φ) generalizes a number of subfamilies of the function class A,
including, for instance:

1. If

φ(κ) =
1 + Lκ

1 + Mκ
,

with −1 ≤ M < L ≤ 1, then

S∗[L, M] ≡ S∗
(

1 + Lκ

1 + Mκ

)
,

where S∗[L, M] is the class of Janowski starlike functions, see [11].
2. Choose φ(κ) =

√
1 + κ, we receive the family S∗L, defined and investigated by Sokol

et al. [12].
3. For the function

φ(κ) = 1 + sinh−1 κ,
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we receive the class S∗ρ , introduced by kumar and Arora [13].
4. If φ(κ) = eκ , then the class S∗(φ) becomes S∗e , which is defined and studied by

Mendiratta [14].
5. For φ(κ) = 1 + sin(κ), the class S∗(φ) reduces to the class S∗sin. The family S∗s was

introduced by Cho et al. [15] as:

S∗sin =

{
ω ∈ A :

κω′(κ)

ω(κ)
≺ 1 + sin(κ), (κ ∈ Ω)

}
, (4)

which means that κω′(κ)
ω(κ)

lies in an eight shaped region.

6. If we pick φ(κ) = cos(κ), we receive the family S∗cos, initiated by Bano and Raza [16].
7. If we select φ(κ) = sec h(κ), we obtain a family S∗sec h introduced by Al-Shbeil et al. [17].

In this paper, we define the following subfamily of holomorphic functions

S∗tan =

{
ω ∈ A :

κω′(κ)

ω(κ)
≺ 2 + tan(κ)

2

}
(κ ∈ Ω). (5)

2. Set of Lemma’s

The following are some useful lemma, which we use in our main finding.
Let P denote the family of all holomorphic functions p with a positive real part,

having the following series representation:

p(κ) = 1 +
∞

∑
n=1

cnκn, κ ∈ Ω. (6)

Lemma 1. If p ∈ P , then the following estimates are valid:

|ck| ≤ 2, k ≥ 1, (7)

|ck+n − µckcn| < 2, 0 < µ ≤ 1, (8)

and, for η ∈ C , we have ∣∣∣c2 − ηc2
1

∣∣∣ < 2 max{1, |2η − 1|}. (9)

For the inequalities (7) and (8), see [18], and (9) is given in [19].

Lemma 2 ([20]). If p ∈ P and has the form (6), then

|α1c3
1 − α2c1c2 + α3c3| ≤ 2|α1|+ 2|α2 − 2α1|+ 2|α1 − α2 + α3|, (10)

where α1, α2, and α3 are real numbers.

Lemma 3 ([21]). Let m1, n1, l1, and r1 satisfy the inequalities m1, r1 ∈ (0, 1) and

8r1(1− r1)
[
(m1n1 − 2l1)

2 + (m1(r1 + m1)− n1)
2
]

+ m1(1−m1)(n1 − 2r1m1)
2

≤ 4m2
1(1−m1)

2r1(1− r1).

If h ∈ P and is of the form (6), then∣∣∣∣l1c4
1 + r1c2

2 + 2m1c1c3 −
3
2

n1c2
1c2 − c4

∣∣∣∣ ≤ 2.
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3. Coefficient Bounds and Zalcman Functional for the Family S∗tan

One of the established conjectures in the study of Geometric function theory, posited
by Lawrence Zalcman in 1960, states that the coefficients of class S satisfy the inequality∣∣∣d2

n − d2n−1

∣∣∣ ≤ (n− 1)2.

The equality in the above inequality holds only for the renowned Koebe function k(κ) =
κ

(1−κ)2 and its rotations. The famous Fekete–Szegö inequality holds for n = 2. Zalcman’s

conjecture in its original setting, i.e., for the entire class S , has been proved by Krushkal for
n = 3, 4, 5, and 6 in [22]. This important result is now presented also in the books [23,24].
For detailed studies on Zalcman functionals, see the articles [25–30].

Theorem 1. Let ω ∈ S∗tan. Then, the following estimates hold:

|d2| ≤
1
2

,

|d3| ≤
1
4

,

|d4| ≤
1
6

,

|d5| ≤
1
8

.

These estimates are sharp for the function

ωn(κ) = κ +
1

2n
κn+1 + · · · , n = 1, 2, 3, . . . . (11)

Proof. Let ω ∈ S∗tan. Then, by property of the Schwarz function u(κ), so that u(0) = 0 and
|u(κ)| ≤ |κ|, we have

κω′(κ)

ω(κ)
=

2 + tan(u(κ))
2

.

As there is one–one correspondence between u(κ) and the function with the positive real
part p(κ), we can write

u(κ) =
p(κ)− 1
p(κ) + 1

.

Now,

2 + tan(u(κ))
2

= 1 +
1
4

c1κ +

(
1
4

c2 −
1
8

c2
1

)
κ2 +

(
1

12
c3

1 −
1
4

c2c1 +
1
4

c3

)
κ3(

− 1
16

c4
1 +

1
4

c2
1c2 −

1
4

c3c1 −
1
8

c2
2 +

1
4

c4

)
κ4 + · · · . (12)

And,

κω′(κ)

ω(κ)
= 1 + d2κ +

(
2d3 − d2

)
κ2 +

(
3d4 − 3d2d3 − d3

2

)
κ3 +(

4d5 − d4
2 + 4d2

2d3 − 4d2d4 − 2d2
3

)
+ · · · . (13)
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On comparing (12) and (13), we have

d2 =
1
4

c1, (14)

d3 =
1
8

c2 −
1

16
c2

1, (15)

d4 =
1

144
c3

1 −
5
96

c2c1 +
1
12

c3, (16)

d5 = − 65
9216

c4
1 +

13
384

c2
1c2 −

1
24

c3c1 −
3

128
c2

2 +
1

16
c4. (17)

Applying (7) to (14), we have

|d2| ≤
1
2

.

To find the bound of d3, apply (8) to (15), and then we have

|d3| ≤
1
4

.

Applying (10) to (16), we get

|d4| ≤
1
6

.

And,

|d5| =
1

16

∣∣∣∣ 65
576

c4
1 −

13
24

c2
1c2 +

2
3

c3c1 +
3
8

c2
2 − c4

∣∣∣∣.
Now, using Lemma 3 with l1 = 65

576 , r1 = 3
8 , m1 = 1

3 , and n1 = 13
36 , we have

|d5| ≤
1
8

.

Theorem 2. Let ω ∈ S∗tan. Then, for a complex number λ, we have∣∣∣d3 − λd2
2

∣∣∣ ≤ 1
4

max{1, |λ|}.

The estimate is sharp for function ω1, defined by (11).

Proof. From (14) and (15), we have∣∣∣d3 − λd2
2

∣∣∣ = 1
8

∣∣∣∣c2 −
1 + λ

2
c2

1

∣∣∣∣.
The desired result is achieved by applying (9) to the above equation.

Set λ = 1 in the above Theorem 2, and then we receive the following corollary, which
is a special case of Zalcman functional when n = 2.

Corollary 1. Let ω ∈ S∗tan. Then, ∣∣∣d3 − d2
2

∣∣∣ ≤ 1
4

.

A sharp result is achieved for the function ω1, defined by (11).
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Proof. From (15) and (17), we have∣∣∣d2
3 − d5

∣∣∣ =

∣∣∣∣ 101
9216

c4
1 −

19
384

c2
1c2 +

1
24

c3c1 +
5

128
c2

2 −
1
16

c4

∣∣∣∣
≤ 1

8
(using Lemma 3).

Which is our desired proof. For sharpness, set n = 4 in Equation (11), that is

ω4(κ) = κ +
1
8

κ4 + · · · .

And, ∣∣∣d2
3 − d5

∣∣∣ = |d5| =
1
8

.

4. Majorization Results

First, we select the holomorphic nonvanishing functions Λ1 and Λ2 in open unit disc
Ω with conditions

Λ1(0) = 1 and Λ2(0) = 1.

Following that, the families established in this article consist of functions ω ∈ A, whose ra-
tios ω(κ)

κq(κ) and q(κ) are, respectively, subordinated to Λ1 and Λ2, for the certain holomorphic
function q, with q(0) = 1 as

ω(κ)

κq(κ)
≺ Λ1(κ) and q(κ) ≺ Λ2(κ).

We will now choose a certain particular functions rather than Λ1 and Λ2. These options
include

Λ1(κ) = cos(κ),

or
Λ1(κ) =

√
1 + κ,

or
Λ1(κ) = sec h(κ),

and

Λ2(κ) =
2 + tan(κ)

2
.

Using the previously discussed concepts, we now study the following new subfamilies:

Υcos =

{
ω ∈ A :

ω(κ)

κq(κ)
≺ cos(κ) and q(κ) ≺ 2 + tan(κ)

2

}
,

ΥL =

{
ω ∈ A :

ω(κ)

κq(κ)
≺
√

1 + κ and q(κ) ≺ 2 + tan(κ)
2

}
,

Υsec h =

{
ω ∈ A :

ω(κ)

κq(κ)
≺ sec h(κ) and q(κ) ≺ 2 + tan(κ)

2

}
.

Majorization results for each of the aforementioned families are covered in the current
section.
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Lemma 4. Let q(κ) ≺ 1 + tan(κ)
2 . Then, for |κ| ≤ s, we have∣∣∣∣κq′(κ)

q(κ)

∣∣∣∣ ≤ s sec2(s)
(1− s2)(2− tan(s))

.

Proof. As q(κ) ≺ 1 + tan(κ)
2 , by the properties of the Schwarz function u(κ), we have

q(κ) =
2 + tan(u(κ))

2
.

Taking log differentiation on both sides, we have

κq′(κ)
q(κ)

=
u′(κ) sec2(u(κ))

2 + tan(u(κ))
(18)

Let us assume that u(κ) = Reiθ , θ ∈ [0, 2π], and |κ| = R ≤ s. Consider

∣∣∣tan
(

Reiθ
)∣∣∣2 =

(
sin(R cos θ) cos(R cos θ)

cos2(R cos θ) + sinh2(R cos θ)

)2

+

(
sinh(R sin θ) cosh(R sin θ)

cos2(R cos θ) + sinh2(R cos θ)

)
= Q(θ) (say).

Clearly, Q(θ) is satisfied with the condition of the even function, which is Q(−θ) = Q(θ),
so we could consider interval [0, π] instead of [0, 2π]. Moreover, Q′(θ) = 0 has three roots
in interval 0 ≤ θ ≤ π, namely, θ = 0, π

2 and π. We notice that

Q
(π

2

)
= tanh2 R and Q(0) = tan2 R = Q(π).

Moreover , we see that

max
{

Q(0), Q
(π

2

)
, Q(π)

}
= tan2 R ≤ tan2 s,

min
{

Q(0), Q
(π

2

)
, Q(π)

}
= tanh2 R ≤ tanh2 s.

Hence,
tanh s ≤

∣∣∣tan
(

Reiθ
)∣∣∣ ≤ tan s. (19)

Also,

∣∣∣sec
(

Reiθ
)∣∣∣2 =

(
cos(R cos θ) cosh(R sin θ)

cos2(R cos θ) + sinh2(R sin θ)

)2

+

(
sin(R cos θ) sinh(R sin θ)

cos2(R cos θ) + sinh2(R sin θ)

)2

= E(θ) (say).

As E(−θ) = E(θ), it is an even function; therefore, we have to consider interval [0, π].
Furthermore, E′(θ) = 0 also has three roots: θ = 0, π

2 , and π,

E
(π

2

)
= sec h2R and Q(0) = sec2 R = E(π).

Moreover, we see that

max
{

E(0), E
(π

2

)
, E(π)

}
= sec2 R ≤ sec2 s,

min
{

E(0), E
(π

2

)
, E(π)

}
= sec h2R ≤ sec h2s.
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Hence,

sec h2s ≤
∣∣∣sec

(
Reiθ

)∣∣∣2 ≤ sec2 s. (20)

Also, the Schwarz function u(κ) satisfies the following condition

∣∣u′(κ)∣∣ ≤ 1− |u(κ)|2

1− |κ|2
=

1− R2

1− s2 ≤
1

1− s2 . (21)

Now, from (18), we have ∣∣∣∣κq′(κ)
q(κ)

∣∣∣∣ ≤ |κ||u′(κ)|
∣∣sec2(u(κ))

∣∣
2− |tan(u(κ))| . (22)

Now, using (19)–(21) to above inequality (22), we receive the desired achievement.

Theorem 3. Let ω ∈ A, g ∈ Υcos and also assume that ω(κ)� g(κ) in Ω. Then, for |κ| ≤ s1∣∣ω′(κ)∣∣ ≤ ∣∣g′(κ)∣∣,
where s1 is the smallest positive root of the equation((

1− 2s− s2
)

cos s− s sinh s
)
(2− tan s)− s cos s sec2 s = 0.

Proof. Let g ∈ Υcos. Then, by the property of the Schwarz function u(κ), we receive

g(κ)
κq(κ)

= cos(u(κ)).

After some straightforward calculations, we receive

κg′(κ)
g(κ)

= 1 +
κq′(κ)
q(κ)

− κu′(κ) sin(u(κ))
cos(u(κ))

.

Now, by using (19)–(21) along with Lemma 4, we have∣∣∣∣ g(κ)
g′(κ)

∣∣∣∣ =
|κ|∣∣∣1 + κq′(κ)

q(κ) −
κu′(κ) sin(u(κ))

cos(u(κ))

∣∣∣
≤

s
(
1− s2)(2− tan s) cos s

(1− s2)(2− tan s) cos s− s sec2 s cos s− s sinh s(2− tan s)
. (23)

From (2), we can write
ω(κ) = Φ(κ)g(κ),

upon differentiating, we get

ω′(κ) = Φ′(κ)g(κ) + Φ(κ)g′(κ)

=

(
Φ′(κ)

g(κ)
g′(κ)

+ Φ(κ)

)
g′(κ). (24)

Also, the Schwarz function satisfies the following condition

∣∣Φ′(κ)∣∣ ≤ 1− |Φ(κ)|2

1− |κ|2
=

1− |Φ(κ)|2

1− s2 . (25)
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Now, using (23) and (24) in (25), we obtain

∣∣ω′(κ)∣∣ ≤
 s

(
1− |Φ(κ)|2

)
(2− tan s) cos s

(1− s2)(2− tan s) cos s− s sec2 s cos s− s sinh s(2− tan s)
+ |Φ(κ)|

∣∣g′(κ)∣∣,
let us assume that |Φ(κ)| = δ, where 0 ≤ δ ≤ 1. Then, the above inequality becomes∣∣ω′(κ)∣∣ ≤ Ψ(δ, s)

∣∣g′(κ)∣∣,
where

Ψ(δ, s) =
s
(
1− δ2)(2− tan s) cos s

(1− s2)(2− tan s) cos s− s sec2 s cos s− s sinh s(2− tan s)
+ δ.

To determine s1, it is sufficient to choose

s1 = max(s ∈ [0, 1] : Ψ(δ, s) ≤ 1, for all δ ∈ [0, 1]),

or
s1 = max(s ∈ [0, 1] : G(δ, s) ≥ 0, for all δ ∈ [0, 1]),

where

G(δ, s) =
((

1− s2 − s(1 + δ)
)

cos s− s sinh s
)
(2− tan s)− s sec2 s cos s.

Clearly, if we select δ = 1, then we can see that the function G(δ, s) gets its minimum value,
which is

min(G(δ, s), s ∈ [0, 1]) = G(δ, 1) = H(s),

where
H(s) =

((
1− s2 − 2s

)
cos s− s sinh s

)
(2− tan s)− s sec2 s cos s.

Next, we have the following inequalities:

H(0) = 2 > 0 and H(1) = −2. 849 2 < 0.

There is indeed a s1, so that H(s) ≥ 0, for every s in [0, s1], s1 is the smallest positive root of
the equation ((

1− s2 − 2s
)

cos s− s sinh s
)
(2− tan s)− s sec2 s cos s.

The proof is completed.

Theorem 4. Let ω ∈ A, g ∈ ΥL and also suppose that ω(κ)� g(κ) in Ω. Then, for |κ| ≤ s1,∣∣ω′(κ)∣∣ ≤ ∣∣g′(κ)∣∣,
where s1 is the smallest positive root of the equation(

2− 5s− 3s2
)
(2− tan s)− 2s sec2 s = 0.

Proof. If g ∈ ΥL. Then, a holomorphic function u(κ) such that u(0) = 0 and |u(κ)| ≤ |κ|,
so that

g(κ)
κq(κ)

=
√

1 + u(κ).
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After, simple calculations, we attain

κg′(κ)
g(κ)

= 1 +
κq′(κ)
q(κ)

− κu′(κ)
2(1 + u(κ))

.

Now, by using (21), we have∣∣∣∣ κu′(κ)
2(1 + u(κ))

∣∣∣∣ ≤ |κ|(1 + |u(κ)|)
2(1− |u(κ)|) ≤

|κ|(1 + |κ|)
2
(

1− |κ|2
) =

|κ|
2(1− |κ|)

≤ s
2(1− s)

. (26)

In the light of (26) and Lemma 4, we have∣∣∣∣ g(κ)
g′(κ)

∣∣∣∣ =
|κ|∣∣∣1 + κq′(κ)

q(κ) −
κu′(κ)

2(1+u(κ))

∣∣∣
≤ |κ|

1−
∣∣∣ κq′(κ)

q(κ)

∣∣∣− ∣∣∣ κu′(κ)
2(1+u(κ))

∣∣∣
≤

2s
(
1− s2)(2− tan s)

2(1− s2)(2− tan s)− 2s sec2 s− s(1 + s)(2− tan s)
. (27)

From (2), we can write
ω(κ) = Φ(κ)g(κ),

upon differentiating, we get

ω′(κ) = Φ′(κ)g(κ) + Φ(κ)g′(κ)

=

(
Φ′(κ)

g(κ)
g′(κ)

+ Φ(κ)

)
g′(κ). (28)

Also, Schwarz function satisfies the following condition

∣∣Φ′(κ)∣∣ ≤ 1− |Φ(κ)|2

1− |κ|2
=

1− |Φ(κ)|2

1− s2 . (29)

Now, using (27) and (29) in (28), we obtain

∣∣ω′(κ)∣∣ ≤
 2s

(
1− |Φ(κ)|2

)
(2− tan s)

2(1− s2)(2− tan s)− 2s sec2 s− s(1 + s)(2− tan s)
+ |Φ(κ)|

∣∣g′(κ)∣∣,
By using the same calculations as in Theorem 4, the desired outcomes are attained.

Theorem 5. Let ω ∈ A, g ∈ Υsec h and also presume that ω(κ)� g(κ) in Ω. Then, for |κ| ≤ s1,∣∣ω′(κ)∣∣ ≤ ∣∣g′(κ)∣∣,
where s1 is the smallest positive root of the equation(

1− s2 − s(2 + tan s)
)
(2− tan s)− s sec2 s = 0.

Proof. If g ∈ Υsec h, then a holomorphic function u(κ)is achieved, such that u(0) = 0,
|u(κ)| ≤ |κ|, and

g(κ)
κq(κ)

= sec h(u(κ)).
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After simple calculations, we attain

κg′(κ)
g(κ)

= 1 +
κq′(κ)
q(κ)

− κu′(κ) tanh(u(κ)).

Let u(κ) = Reiθ , |κ| = s ≤ s1. Then,

∣∣∣tanh
(

Reiθ
)∣∣∣2 =

(
sinh(R cos θ) cosh(R cos θ)

sinh2(R cos θ) + cos2(R sin θ)

)2

+

(
sin(R sin θ) cos(R sin θ)

sinh2(R cos θ) + cos2(R sin θ)

)2

= z(θ) (say).

Clearly, z(θ) is even function, so it is enough to consider interval [0, π] instead of [0, π] for
θ. Also, after simple calculations, z′(θ) = 0 has three roots, namely, θ = 0, π and π

2 . We
notice that

z
(π

2

)
= tan2 R and z(0) = tanh2 R = z(π).

Moreover, we see that

max
{
z(0),z

(π

2

)
,z(π)

}
= tan2 R.

Hence, ∣∣∣tanh
(

Reiθ
)∣∣∣ ≤ tan R ≤ tan s. (30)

In the light of (21), (30), and Lemma 4, we have∣∣∣∣ g(κ)
g′(κ)

∣∣∣∣ =
|κ|∣∣∣1 + κq′(κ)

q(κ) −
κu′(κ)

2(1+u(κ))

∣∣∣
≤ |κ|

1−
∣∣∣ κq′(κ)

q(κ)

∣∣∣− |κu′(κ) tanh(u(κ))|

≤
s
(
1− s2)(2− tan s)

(1− s2)(2− tan s)− s sec2 s− s tan s(2− tan s)
. (31)

From (2), we can write
ω(κ) = Φ(κ)g(κ),

and upon differentiating, we receive

ω′(κ) = Φ′(κ)g(κ) + Φ(κ)g′(κ)

=

(
Φ′(κ)

g(κ)
g′(κ)

+ Φ(κ)

)
g′(κ). (32)

Now using (31) and (25) in (32), we obtain

∣∣ω′(κ)∣∣ ≤
 s

(
1− |Φ(κ)|2

)
(2− tan s)

(1− s2)(2− tan s)− s sec2 s− s tan s(2− tan s)
+ |Φ(κ)|

∣∣g′(κ)∣∣.
The same calculations as in Theorem 4 are used to produce the required outcomes.

5. Conclusions

In this article, we, first, derived sharp coefficient estimates, sharp Fekete–Szegö, and
Zalcman functionals for the subfamily of holomorphic functions associated with tangent
functions. Furthermore, we looked into the majorization results for a some families of
holomorphic functions that are associated with various shapes domains. It is possible to
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extend these results into more subfamiles, including, for example, for the class of meromor-
phic functions and the families of harmonic functions. Furthermore, one may attempt to
produce results for certain subclasses of q-starlike functions: for details, see [31–41].
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29. Eframidis, I.; Vukotić, D. Application of Livingston-type inequalities to the generalized Zalcman functional. Math. Nachr. 2018,

291, 1502–1513. [CrossRef]
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