Next Article in Journal
Distance Metric Optimization-Driven Neural Network Learning Framework for Pattern Classification
Next Article in Special Issue
Bi-Univalent Functions Based on Binomial Series-Type Convolution Operator Related with Telephone Numbers
Previous Article in Journal
On the Realization of Exact Upper Bounds of the Best Approximations on the Classes H1,1 by Favard Sums
Previous Article in Special Issue
Classes of Harmonic Functions Related to Mittag-Leffler Function

Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

# Starlike Functions Associated with Bernoulli’s Numbers of Second Kind

by
Mohsan Raza
1,
Mehak Tariq
1,
Jong-Suk Ro
2,3,*,
Fairouz Tchier
4 and
Sarfraz Nawaz Malik
5,*
1
2
School of Electrical and Electronics Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
3
Department of Intelligent Energy and Industry, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
4
Mathematics Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
5
Department of Mathematics, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan
*
Authors to whom correspondence should be addressed.
Axioms 2023, 12(8), 764; https://doi.org/10.3390/axioms12080764
Submission received: 11 July 2023 / Revised: 26 July 2023 / Accepted: 1 August 2023 / Published: 3 August 2023
(This article belongs to the Special Issue New Developments in Geometric Function Theory II)

## Abstract

:
The aim of this paper is to introduce a class of starlike functions that are related to Bernoulli’s numbers of the second kind. Let $φ B S ( ξ ) = ξ e ξ − 1 2 = ∑ n = 0 ∞ ξ n B n 2 n !$, where the coefficients of $B n 2$ are Bernoulli numbers of the second kind. Then, we introduce a subclass of starlike functions $𝟊$ such that $ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) ≺ φ B S ( ξ ) .$ We found out the coefficient bounds, several radii problems, structural formulas, and inclusion relations. We also found sharp Hankel determinant problems of this class.
MSC:
30C45; 30C50

## 1. Introduction and Preliminaries

The Bernoulli numbers first appeared in the posthumous publications of Jakob Bernoulli in (1713), and they were independently discovered by the Japanese mathematician Seki Takakazu in 1712 [1]. We define the Bernoulli numbers of the k kind as follows:
$φ B S ( ξ ) = ξ e ξ − 1 k = ∑ n = 0 ∞ ξ n B n k n ! .$
Bernoulli numbers of the k kind are denoted by $B n k$. The function defined in (1) for $k = 1$ is known as the Bernoulli function. The convexity of the function $φ B S$ given in (1), as well as its reciprocal function $e ξ − 1 / ξ$ are studied in [2,3]; see also [4].
Let $H$ denote a class of analytic functions in $E = [ ξ ∈ C : | ξ | < 1 ] .$ Let $A n ⊂ H$ represent the functions $𝟊$ having the series expansion $𝟊 ( ξ ) = ξ + d n + 1 ξ n + 1 + d n + 2 ξ n + 2 + ⋯$ in $E$. The class $A 1 = A$ represents the function $𝟊$ with a power series representation:
$𝟊 ( ξ ) = ξ + ∑ n = 2 ∞ d n ξ n , ξ ∈ E .$
The class $S ⊂ A$ contains the univalent function $𝟊$ $( i . e . , 𝟊 ( ξ 1 ) = 𝟊 ( ξ 2 )$, which implies that $ξ 1 = ξ 2$ in $E$). Let $𝟊 ∈ A$. Then, $𝟊$ is in the $S *$ of univalent starlike functions if, and only if
$R e ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) > 0 , ξ ∈ E .$
Let $B ⊂ H$ represent a class of self maps $ϖ$ (Schwarz functions) in $E$ with $ϖ 0 = 0$. Assume that $𝟊$ and g are analytic (holomorphic) in $E$. Then, $𝟊 ≺ g$ and reads as $𝟊$, which is subordinated by g such that $𝟊 ( ξ ) = g ϖ ( ξ )$ for $ξ ∈ E$ and $ϖ ∈ B$ if the subordinating function g is univalent. Then,
$𝟊 0 = g 0 ⇔ 𝟊 E ⊆ g E .$
In [5], the authors have introduced a subclass of $S *$ defined by
$S * ( φ ) = 𝟊 ∈ A : ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) ≺ φ ( ξ ) .$
The function $φ$ is one-to-one in $E$, and maps $E$ onto a starlike domain with respect to $φ 0 = 1$, with $φ ′ 0 > 0$ being symmetric about the real axis. We obtain subclasses of $S *$ by taking particular $φ$. The functions in class $S * [ a , b ] : = S * ( ( 1 + a ξ ) / ( 1 + b ξ ) )$ are Janowski starlike functions [6]. Furthermore, $S * λ : = S * [ 1 − 2 λ , − 1 ]$ represents starlike functions of order $λ ∈ 0 , 1$, whereas $S * 0 = S *$. The class
$S S * β : = S * ( 1 + ξ ) / ( 1 − ξ ) β = 𝟊 ∈ A : arg ξ 𝟊 ′ ( ξ ) / 𝟊 ( ξ ) < β π / 2 , β ∈ 0 , 1$
represents strongly starlike functions in $E .$ The class $SL * : = S * 1 + ξ$ contains starlike functions related with a lemniscate of the Bernoulli; see [7]. The classes
$S RL * : = S * 2 − 2 − 1 1 − ξ / 1 + 2 2 − 1 ξ 1 / 2$
and $S e * : = S * ( e ξ )$ were studied in [8,9]. The class $S C * : = S * 1 + 4 ξ / 3 + 2 ξ 2 / 3$ represents starlike functions related with a cardioid [10]. The classes $S s * : = S * ( 1 + sin ξ )$ and $S cos * : = S * ( cos ξ )$ are related with sine and cosine functions, respecitvely; see [11] and [12] respectively. The class $S Δ * = S * ξ + 1 + ξ 2$ is related with the lune, see [13], whereas the class $BS * ( λ ) : = S * 1 + ξ / 1 − λ ξ 2 , λ ∈ [ 0 , 1 ]$ is related with the Booth lemniscate; see [14]. The class $S B * : = S * ( e e ξ − 1 )$ is related to the Bell numbers; see [15]. The class $S T * = S * ( e ( ξ + μ ξ 2 2 ) )$ is related to telephone numbers; see [16]. The class $S BF * = S * ξ / e ξ − 1$ contains starlike functions related with Bernoulli functions’ see [17].
For some recent work, we refer to [18,19,20,21,22,23] and the references therein.
We now define the class $S B S *$ associated with the Bernoulli numbers of the second kind.
Definition 1.
Let $𝟊 ∈ A$. Then, $𝟊 ∈ S B S *$ if and only if
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) ≺ ξ e ξ − 1 2 = φ B S ( ξ ) , ξ ∈ E .$
In other words, a function $𝟊 ∈ S B S *$ can be written as
$𝟊 ( ξ ) = ξ exp ∫ 0 ξ φ ( s ) − 1 s d s ,$
where $φ$ is analytic and satisfies $φ ( ξ ) ≺ φ B S ( ξ ) = ( ξ e ξ − 1 ) 2 ( ξ ∈ E ) .$
To give some examples of functions in the class $S B S *$, consider
$φ 1 ( ξ ) = 1 + ξ 4 , φ 2 ( ξ ) = 5 + 2 ξ 5 + ξ , φ 3 ( ξ ) = 3 + ξ e ξ 3 , φ 4 ( ξ ) = 1 + ξ cos ( ξ ) 4 .$
The function $φ 0 ( ξ ) = ( ξ e ξ − 1 ) 2$ is univalent in $E$, $φ i ( 0 ) = φ 0 ( 0 ) ( i = 1 , 2 , 3 , 4 )$ and $φ i ( E ) ⊂ φ 0 ( E )$; it is easy to conclude that $φ i ( ξ ) ≺ φ 0 ( ξ )$. The functions $𝟊 i ∈ S B S *$ corresponding to every $φ i$. respectively, are given as follows:
$𝟊 1 ( ξ ) = ξ e ξ / 4 , 𝟊 2 ( ξ ) = ξ 1 + ξ 5 , 𝟊 3 ( ξ ) = ξ exp e ξ − 1 3 , 𝟊 4 ( ξ ) = ξ exp sin ( ξ ) 4 .$
In particular, if $φ 0 ( ξ ) = ξ e ξ − 1 2$, then (3) takes the form
$𝟊 0 ( ξ ) = ξ exp ∫ 0 ξ φ 0 ( s ) − 1 s d s = ξ − ξ 2 + 17 ξ 3 24 − 29 ξ 4 72 + 377 ξ 5 1920 − 11 ξ 6 120 + ⋯ .$
The above function acts as an extremal function for $S B S *$.
The following theorem gives the sharp estimates for $φ B S$:
Lemma 1.
The function $φ B S ( ξ ) = ξ e ξ − 1 2$ satisfies
$min | ξ | = ℓ R e φ B S ( ξ ) = φ B S ( ℓ ) = min | ξ | = ℓ | φ B S ( ξ ) | max | ξ | = ℓ R e φ B S ( ξ ) = φ B S ( − ℓ ) = max | ξ | = ℓ | φ B S ( ξ ) | ,$
whenever$∈ ( 0 , 1 ) .$

## 2. Inclusion and Radius Problems

Theorem 1.
The class $S B S *$ satisfies the following inclusion relations:
1.
If $0 ≤ λ ≤ 1 ( e − 1 ) 2$, then $S B S * ⊂ S * ( λ )$.
2.
If $β ≥ ( e e − 1 ) 2$, then $S B S * ⊂ R S * ( 1 / β ) ⊂ M ( β ) .$
3.
$S B S * ⊂ S S * β$, where $β 0 ≤ β ≤ 1 ,$ wherein $β 0 =$$2 h ( y 2 ) / π ≈ 0.6454469651$m and $h$ is defined in $.$
Proof.
(1) If $𝟊 ∈ S B S *$, then $ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) ≺ ( ξ e ξ − 1 ) 2 .$ According to Lemma 1, we have
$min | ξ | = 1 R e ξ e ξ − 1 2 < R e ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) < max | ξ | = 1 R e ξ e ξ − 1 2 ;$
therefore,
$R e ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) > 1 ( e − 1 ) 2 .$
(2) Similarly,
$R e ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) < e 2 e − 1 2 .$
Thus, $𝟊 ∈ S * 1 e − 1 2 ∩ M e 2 e − 1 2$. Now, we have the following:
$R e 𝟊 ( ξ ) ξ 𝟊 ′ ( ξ ) > e − 1 e 2 .$
This implies that $𝟊 ∈ R S * ( β )$ for $β ≤ e − 1 e 2$. Identically, $𝟊 ∈ R S * ( 1 / β )$ for $β ≥ e e − 1 2$. Also, $𝟊 ∈ R S * ( 1 / β )$ if and only if
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − β 2 < β 2 ,$
which leads to $R e ( ξ 𝟊 ′ ( ξ ) / 𝟊 ( ξ ) ) < β .$ Therefore, $S B S * ⊂ R S * ( 1 / β ) ⊂ M ( β )$ whenever $β ≥ e e − 1 2 .$
(3) If $𝟊 ∈ S B S *$, then
$arg ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) < max ξ = 1 arg ξ e ξ − 1 2 = max 0 ≤ y < 2 π arctan V U .$
Let
$h y = arctan V U ,$
where U and V are given as
$U = cos 2 y e cos y 2 cos sin y 2 − 2 e cos y cos sin y + 1 − e cos y 2 sin sin y 2 + sin 2 y 2 e cos y 2 cos sin y sin sin y − 2 e cos y sin sin y , V = sin 2 y e cos y 2 cos sin y 2 − 2 e cos y cos sin y + 1 − e cos y 2 sin sin y 2 − cos 2 y 2 e cos y 2 cos sin y sin sin y − 2 e cos y sin sin y .$
Here, $h ′ ( y ) = 0$ has $y 1 ≈ 1.409746460$ and $y 2 ≈ 4.873438847$ roots in $[ 0 , 2 π ]$. In addition, $h ″ ( y 2 ) ≈ − 1.0988577$. Hence, $max 0 ≤ y < 2 π h ( y ) = h ( y 2 ) ≈ 1.013865722$, and $arg ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) ≤ π β 2 ;$ that is, $β ≥ 0.645186552 .$ This implies that $S B S * ⊂ S S β * .$
Now, we discuss some radii problems for the class $S B S * .$ The following definitions and lemmas are needed to establish the results. The class $P$ represents the functions p of the form
$p ( ξ ) = 1 + ∑ n = 1 ∞ p n ξ n$
that are analytic in $E$ such that $R e p ( ξ ) > 0$, $ξ ∈ E$. Let
$P n [ a , b ] : = p ( ξ ) = 1 + ∑ k = n ∞ c n ξ n : p ( ξ ) ≺ 1 + a ξ 1 + b ξ , − 1 ≤ b < a ≤ 1 .$
In particular, $P n ( λ ) : = P n [ 1 − 2 λ , − 1 ]$, and $P n : = P n ( 0 ) .$ Let $S n * [ a , b ] = A n ∩ S * [ a , b ]$, and $S n * ( λ ) : = S n * [ 1 − 2 λ , − 1 ]$. Also, let
$S B S , n * : = A n ∩ S B S * , S n * ( λ ) : = A n ∩ S * ( λ ) , S L , n * : = A n ∩ S L * .$
$S n : = { 𝟊 ∈ A n : 𝟊 ( ξ ) / ξ ∈ P n } ,$
and
$C S n ( λ ) : = 𝟊 ∈ A n : 𝟊 ( ξ ) g ( ξ ) ∈ P n , g ∈ S n * ( λ ) ;$
see [24].
Lemma 2
([25]). If $p ∈ P n ( λ )$, then for $| ξ | = ℓ$,
$ξ p ′ ( ξ ) p ( ξ ) ≤ 2 ( 1 − λ ) n ℓ n ( 1 − ℓ n ) ( 1 + ( 1 − 2 λ ) ℓ n ) .$
Lemma 3
([26]). Let $p ∈ P$. Then,
$| j p 1 3 − k p 1 p 2 + l p 3 | ≤ 2 | j | + 2 | k − 2 j | + 2 | j − k + l | .$
Lemma 4
([27]). If $p ∈ P n [ a , b ]$, then for $| ξ | = ℓ$,
$p ( ξ ) − 1 − a b ℓ 2 n 1 − b 2 ℓ 2 n ≤ ( a − b ) ℓ n 1 − b 2 ℓ 2 n .$
If $p ∈ P n ( λ )$, then for $| ξ | = ℓ$,
$p ( ξ ) − ( 1 + ( 1 − 2 λ ) ) ℓ 2 n 1 − ℓ 2 n ≤ 2 ( 1 − λ ) ℓ n 1 − ℓ 2 n .$
In the following lemmas, we find disks centered at $( ν , 0 )$ and $( 1 , 0 )$ of the largest and the smallest radii, respectively, such that $℧ B S : = φ B S ( E )$ lies in the disk with the smallest radius and contains the largest disk.
Lemma 5.
Let $1 e − 1 2 ≤ ν ≤ e e − 1 2$. Then,
$w ∈ C : | w − ν | < ℓ ν ⊂ ℧ B S ⊂ w ∈ C : | w − 1 | < e e − 1 2 ,$
where
$ℓ ν = ν − 1 e − 1 2 , 1 ( e − 1 ) 2 ≤ ν ≤ e 2 + 1 2 e − 1 2 , e e − 1 2 − ν , e 2 + 1 2 e − 1 2 ≤ ν ≤ e e − 1 2 .$
Proof.
Let $cos ( y ) = ϱ$ and $sin ( y ) = ς .$ Then, the square of the distance from the boundary $℧ B S$ to the point $( ν , 0 )$ is given by
$ψ ( y ) = A ( 1 − 2 e ϱ c o s ( ς ) + ( e ϱ ) 2 ) 2 − ν 2 + B ( 1 − 2 e ϱ c o s ( ς ) + ( e ϱ ) 2 ) 2 2 ,$
where
$A = cos ( 2 y ) 1 − 2 e ϱ cos ς + e ϱ 2 cos 2 ς + 2 e ϱ e ϱ cos ς − 1 sin ς sin 2 y , B = sin ( 2 y ) 1 − 2 e ϱ cos ς + e ϱ 2 cos 2 ς − 2 e ϱ e ϱ cos ς − 1 sin ς cos ( 2 y ) .$
To show that $| w − ν | <$$ν$ is largest disk contained in $℧ B S$, it is enough to show that the $min 0 ≤ ≤ 2 π ψ ( y ) = ℓ ν .$ Since $ψ ( y ) = ψ ( − y )$, it is enough to take the range $0 ≤ y ≤ π$.
Case 1: When $1 ( e − 1 ) 2 ≤ ν < e 2 2 e 2 − 8 e + 9 e − 1 2$, then $ψ ′ ( y ) = 0$ has 0 and $π$ roots. In addition, $ψ ′ ( y ) > 0$ for $y ∈ 0 , π$. Thus,
$min 0 ≤ ℓ ≤ π ψ ( y ) = min { ψ ( 0 ) , ψ ( π ) } = ψ ( 0 ) .$
Hence,
$ℓ ν = min 0 ≤ y ≤ π ψ ( y ) = ψ ( 0 ) = 1 ( e − 1 ) 2 − ν .$
Case 2: When $e 2 2 e 2 − 8 e + 9 e − 1 2 < ν ≤ e 2 e − 1 2$, then $ψ ′ ( y ) = 0$ has $0 ,$ $y ν$, and $π$ roots, where $y ν$ depends on $ν$. In addition, $ψ ′ ( y ) > 0$ for $y ∈ 0 , y ν$, and $ψ ′ ( y ) < 0$ when $y ∈ y ν , π$. Therefore, $ψ ( y )$ has minima at 0 or $π$. We also see that $ψ ( 0 ) < ψ ( π )$ for $e 2 2 e 2 − 8 e + 9 e − 1 2 < ν ≤ e 2 + 1 2 e − 1 2$ and $ψ ( 0 ) > ψ ( π )$ for $e 2 + 1 2 e − 1 2 < ν ≤ e e − 1 2 .$
Thus, the first part of the proof is completed.
Now, for the smallest disc that contains $℧ B S$, the function $ψ ( y )$ for $ν = 1$ attains its maximum value at $π$. Thus, the disk with the smallest radius that contains $℧ B S$ has a radius of $e e − 1 2$. □
Theorem 2.
The sharp $R S B S , n *$ for $S n$ is
$R S B S , n * ( S n ) = e 2 − 2 e n 2 ( e − 1 ) 4 + ( e 2 − 2 e ) + n ( e − 1 ) 2 1 / n .$
Proof.
Consider a function $ℏ ( ξ ) ∈ P n$ such that $ℏ ( ξ ) = 𝟊 ( ξ ) / ξ$. Now, we have the following:
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 = ξ ℏ ′ ( ξ ) ℏ ( ξ ) .$
From Lemma 2, we have
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 = ξ ℏ ′ ( ξ ) ℏ ( ξ ) ≤ 2 n ℓ n 1 − ℓ 2 n .$
From Lemma 4, the map of $| ξ | ≤$ under $ξ 𝟊 ′ / 𝟊$ lies in the $℧ B S$ if the following is satisfied:
$2 n ℓ n 1 − ℓ 2 n ≤ 1 − 1 ( e − 1 ) 2 .$
This is equivalently written as
$( ( e − 1 ) 2 − 1 ) ℓ 2 n + 2 n ( e − 1 ) 2 ℓ n + 1 − ( e − 1 ) 2 ≤ 0 .$
Thus, the $S B S , n *$-radius of the $S n$ is the root $ℓ ∈ 0 , 1$ of
$( ( e − 1 ) 2 − 1 ) ℓ 2 n + 2 n ( e − 1 ) 2 ℓ n + 1 − ( e − 1 ) 2 = 0 ;$
that is,
$R S B S , n * ( S n ) = e e − 2 n e − 1 2 + 1 + n 2 + 1 ( e − 1 ) 4 − 2 ( e − 1 ) 2 1 / n .$
Consider $𝟊 0 ξ = ξ ( 1 + ξ n ) / 1 − ξ n .$ Then, $ℏ 0 ( ξ ) = 𝟊 0 ξ / ξ = ( 1 + ξ n ) / ( 1 − ξ n ) > 0$. Thus, $𝟊 0 ∈ S n$, and $ξ 𝟊 0 ′ ( ξ ) / 𝟊 0 ( ξ ) = 1 + 2 n ξ n / ( 1 − ξ 2 n )$. This is beacuse at $ξ = R S B S , n *$, we have
$ξ 𝟊 0 ′ ( ξ ) 𝟊 0 ( ξ ) − 1 = 2 n ξ n 1 − ξ 2 n = 1 − 1 ( e − 1 ) 2 .$
Therefore, $𝟊 0$ gives a sharp result. Hence, the proof is completed. □
Theorem 3.
Let
$R 1 = 4 e − e 2 − 1 2 e − 1 2 ( 1 − 2 λ ) + e 2 + 1 1 2 n , R 2 = ( e − 1 ) 2 − 1 ( 1 + n − λ ) ( e − 1 ) 2 + 1 + ( 2 n 1 − λ + λ 2 + n 2 ) ( e − 1 ) 4 − 2 ( e − 1 ) 2 λ 1 n , R 3 = e 2 ( 1 + n − λ ) ( e − 1 ) 2 + 1 + ( 1 + n − λ ) 2 ( e − 1 ) 4 − ( 1 − 2 λ ) e 4 1 n .$
Then, a sharp $S B S , n *$-radius for the class $CS n ( λ )$ is
$R S B S , n * ( CS n ( λ ) ) = R 2 , i f R 2 ≤ R 1 , R 3 , i f R 2 > R 1 .$
Proof.
Define a function $ℏ ( ξ ) = 𝟊 ( ξ ) / g ( ξ )$, where $g ∈ S n * ( λ )$. Then, $ℏ ∈ P n$, and $ξ g ′ ( ξ ) / g ( ξ )$$∈ P n ( λ )$. From the definition of , we have
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) = ξ g ′ ( ξ ) g ( ξ ) + ξ ℏ ′ ( ξ ) ℏ ( ξ ) .$
From Lemmas 2 and 3, we see that
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 + ( 1 − 2 λ ) ℓ 2 n 1 − ℓ 2 n ≤ 2 ( 1 + n − λ ) ℓ n 1 − ℓ 2 n .$
Now, we find the values $R 1 , R 2$ and $R 3$ for $0 < ℓ < 1$ and $0 ≤ λ < 1 .$ Firstly, we find $R 1 .$ For $ℓ ≤ R 1$, this can be found if and only if
$1 + ( 1 − 2 λ ) ℓ 2 n 1 − ℓ 2 n ≤ e 2 + 1 2 e − 1 2 .$
This implies that
$ℓ ≤ 4 e − e 2 − 1 2 e − 1 2 ( 1 − 2 λ ) + e 2 + 1 1 2 n .$
Now, we obtain $R 2 .$ For this, we must have
$2 ( 1 + n − λ ) ℓ n 1 − ℓ 2 n ≤ 1 + ( 1 − 2 λ ) ℓ 2 n 1 − ℓ 2 n − 1 ( e − 1 ) 2 .$
This implies that
$ℓ ≤ ( e − 1 ) 2 − 1 ( 1 + n − λ ) ( e − 1 ) 2 + 1 + ( − 2 n λ + λ 2 + 2 n + n 2 ) ( e − 1 ) 4 − 2 ( e − 1 ) 2 λ .$
For $R 3 ,$ we have
$2 ( 1 + n − λ ) ℓ n 1 − ℓ 2 n ≤ e e − 1 2 − 1 + ( 1 − 2 λ ) ℓ 2 n 1 − ℓ 2 n .$
This implies that
$ℓ ≤ e 2 ( 1 + n − λ ) ( e − 1 ) 2 + 1 + ( 1 + n − λ ) 2 ( e − 1 ) 4 − ( 1 − 2 λ ) e 4 .$
Theorem 4.
The $S B S , n *$-radius for $S n * [ a , b ]$ is
$R S B S , n * ( S n * [ a , b ] ) = min { 1 ; ℓ 1 } , − 1 ≤ b ≤ 0 < a ≤ 1 , min { 1 ; ℓ 2 } , 0 < b < a ≤ 1 ,$
where
$ℓ 1 = 2 e − 1 e − 1 2 a − b e 2 1 / n ,$
and
$ℓ 2 = e e − 2 a ( e − 1 ) 2 − b 1 / n .$
Proof.
Let $𝟊 ∈ S n * [ a , b ]$. Then, from Lemma 3, we can write
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − C ≤ ( a − b ) ℓ n 1 − b 2 ℓ 2 n ,$
where
$C = 1 − a b ℓ 2 n 1 − b 2 ℓ 2 n , | ξ | = ℓ .$
For $b < 0$, we see that $C ≥ 1$. Also by using Lemma 4, $𝟊 ∈ S B S , n *$ if
$1 + ( a − b ) ℓ n − a b ℓ 2 n 1 − b 2 ℓ 2 n ≤ e 2 ( e − 1 ) 2 ,$
which is equivalent to
$ℓ ≤ 2 e − 1 e − 1 2 a − b e 2 1 / n = ℓ 1 .$
Furthermore, if $b = 0$, then $C = 1$. From (8), we have
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 ≤ a ℓ n , ( 0 < a ≤ 1 ) .$
By using Lemma 4 with $a = 1$, this gives $ℓ ≤ e e − 2 a e − 1 2 1 / n$ for $𝟊 ∈ S B S , n *$. We see that $C < 1$ for $0 < b < a ≤ 1$. Thus, from Lemma 4 and (8), we have $𝟊 ∈ S B S , n *$ if
$( a − b ) ℓ n 1 − b 2 ℓ 2 n ≤ 1 − a b ℓ 2 n 1 − b 2 ℓ 2 n − 1 ( e − 1 ) 2 ,$
or, equivalently, if
$ℓ ≤ e e − 2 a ( e − 1 ) 2 − b 1 / n = ℓ 2 .$
This completes the result. □
Theorem 5.
Let $− 1 < b < a ≤ 1$. If either
(a)
$( 1 − b ) ≤$$( e − 1 ) 2 1 − a$ and $2 ( 1 − b 2 ) ≤ 1 − a b ( e − 1 ) 2 < ( 1 − b 2 ) ( 1 + e 2 )$ or if
(b)
$a + 1 ( e − 1 ) 2 ≤ e 2 ( 1 + b )$ and $( 1 − b 2 ) 1 + e 2 ≤ 2 1 − a b ( e − 1 ) 2 ≤ 2 e 2 ( 1 − b 2 )$ hold, then $S n * [ a , b ] ⊂ S B S , n *$.
Proof.
(a) Let $p ( ξ ) = ξ 𝟊 ′ ( ξ ) / 𝟊 ( ξ )$. From Lemma 3, $𝟊 ∈ S n * [ a , b ]$ if
$p ( ξ ) − 1 − a b 1 − b 2 ≤ a − b 1 − b 2 .$
In connection with Lemma 4, $𝟊 ∈ S n * [ a , b ]$ if
$a − b 1 − b 2 ≤ 1 − a b 1 − b 2 − 1 ( e − 1 ) 2 ,$
and
$1 ( e − 1 ) 2 ≤ 1 − a b 1 − b 2 ≤ 1 2 1 + e 2 ( e − 1 ) 2 ,$
which, upon simplification, reduce to $( a )$.
(b) Let $p ( ξ ) = ξ 𝟊 ′ ( ξ ) / 𝟊 ( ξ )$. Since $𝟊 ∈ S n * [ a , b ]$, thus, in the view of Lemma 3,
$p ( ξ ) − 1 − a b 1 − b 2 ≤ a − b 1 − b 2 .$
By using Lemma 4, we note that $𝟊 ∈ S n * [ a , b ]$ if the following is satisfied:
$a − b 1 − b 2 ≤ e 2 ( e − 1 ) 2 − 1 − a b 1 − b 2 ,$
and
$1 2 1 + e 2 ( e − 1 ) 2 ≤ 1 − a b 1 − b 2 ≤ e 2 ( e − 1 ) 2 ,$
which reduced to the conditions $( b )$. □
Theorem 6.
The sharp radii for $S L *$, $S RL * , S e *$, and $S lim *$ are
• $R S B S * ( S L * ) = ( e − 1 ) 4 − 1 ( e − 1 ) 4 ≈ 0.889 ,$
• $R S B S * ( S RL * ) = ( 5 + 4 2 ) ( e − 1 ) 4 + ( − 6 2 − 8 ) ( e − 1 ) 2 + 3 + 2 2 ( 5 + 4 2 ) ( e − 1 ) 4 + ( 8 + 4 2 ) ( e − 1 ) 2 + 2 + 2 2 ≈ 0.87193 ,$
• $R S B S * ( S e * ) = 2 − 2 ln ( e − 1 ) ≈ 0.917350 ,$
• $R S B S * ( S lim * ) = 2 ( e − 2 ) e − 1 ≈ 0.591174 .$
Proof.
(1) For $𝟊 ∈ S L *$, we have
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) = 1 + ϖ ( ξ ) .$
By the Schwarz Lemma $| ϖ ( ξ ) | ≤ | ξ |$, we thus have $1 + ϖ ( ξ ) − 1 ≤ 1 − 1 − ℓ .$ Thus, for $| ξ | = ℓ$, we have
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 ≤ 1 − 1 − ℓ .$
By Lemma 4, we have $1 − 1 − ℓ ≤ 1 − 1 ( e − 1 ) 2 .$ Consider $𝟊 0 ( ξ ) = 4 ξ exp { 2 ( 1 + ξ − 1 ) } ( 1 + 1 + ξ ) 2$, which is in $S L *$ and $ξ 𝟊 0 ′ ( ξ ) 𝟊 0 ( ξ ) = 1 + ξ = 1 ( e − 1 ) 2$ at $R S B S * ( S L * ) .$ Hence, the sharpness is verified.
(2) Let $𝟊 ∈ S RL *$. Then, for $| ξ | =$, we have
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 ≤ 1 − 2 + ( 2 − 1 ) 1 + ℓ 1 − 2 ( 2 − 1 ) ℓ ≤ 1 − 1 ( e − 1 ) 2$
provided that
$ℓ ≤ ( 5 + 4 2 ) ( e − 1 ) 4 + ( − 6 2 − 8 ) ( e − 1 ) 2 + 3 + 2 2 ( 5 + 4 2 ) ( e − 1 ) 4 + ( 8 + 4 2 ) ( e − 1 ) 2 + 2 + 2 2 = R S B S * ( S RL * ) .$
Consider the function $𝟊 1$ defined by
$𝟊 1 ( ξ ) = ξ exp ∫ 0 ξ φ 0 ( t ) − 1 t d t ,$
where
$φ 0 ( ξ ) = 2 − ( 2 − 1 ) 1 − ξ 1 + 2 ( 2 − 1 ) ξ .$
At $ξ = R S B S * ( S RL * ) ,$ we have
$ξ 𝟊 1 ′ ( ξ ) 𝟊 1 ( ξ ) = 2 − ( 2 − 1 ) 1 − ξ 1 + 2 ( 2 − 1 ) ξ = 1 ( e − 1 ) 2 .$
Hence, the sharpness is verified.
(3) $𝟊 ∈ S e * ,$ so we have
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 ≤ e ξ − 1 ≤ e 2 ( e − 1 ) 2 − 1 .$
The result is sharp for $𝟊 2$ such that $ξ 𝟊 2 ′ ( ξ ) 𝟊 2 ( ξ ) = e ξ$.
(4) Suppose that $𝟊 ∈ ( S lim * ) ;$ then $ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) ≺ 1 + 2 ξ + ξ 2 2 .$ Thus, for $| ξ | =$$,$ we can it write as
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 = 1 + 2 ξ + ξ 2 2 − 1 ≤ 2 ℓ − ℓ 2 2 ≤ 1 − 1 ( e − 1 ) 2 ,$
which is satisfied for $ℓ ≤$$2 ( e − 2 ) e − 1$. Consider
$𝟊 3 ( ξ ) = ξ exp 4 2 ξ + ξ 2 4 .$
Since $ξ 𝟊 3 ′ ( ξ ) 𝟊 3 ( ξ ) = 1 + 2 ξ + ξ 2 2 ,$ it follows that $𝟊 3 ∈ ( S lim * )$ and at $ξ = R S B S * ( S lim * ) ,$ so we have $ξ 𝟊 3 ′ ( ξ ) 𝟊 3 ( ξ ) = 1 ( e − 1 ) 2$. □
Consider the families:
$F 1 : = 𝟊 ∈ A n : R e 𝟊 ( ξ ) g ( ξ ) > 0 and R e g ( ξ ) ξ > 0 , g ∈ A n ,$
$F 2 : = 𝟊 ∈ A n : R e 𝟊 ( ξ ) g ( ξ ) > 0 and R e g ( ξ ) ξ > 1 / 2 , g ∈ A n ,$
and
$F 3 : = 𝟊 ∈ A n : 𝟊 ( ξ ) g ( ξ ) − 1 < 1 and R e g ( ξ ) ξ > 0 , g ∈ A n .$
Theorem 7.
The sharp radii for functions in the families $F 1$, $F 2$, and $F 3$ respectively, are:
• $R S B S , n * ( F 1 ) = e ( e − 2 ) 2 n ( e − 1 ) 2 + 1 + 4 n 2 + 1 ( e − 1 ) 4 − 2 ( e − 1 ) 2 1 / n$,
• $R S B S , n * ( F 2 ) = 2 e ( e − 2 ) 3 n ( e − 1 ) 2 + 9 n 2 + 4 n + 4 ( e − 1 ) 4 − 4 n + 2 ( e − 1 ) 2 + 4 1 / n$,
• $R S B S , n * ( F 3 ) = 2 e ( e − 2 ) 3 n ( e − 1 ) 2 + 9 n 2 + 4 n + 4 ( e − 1 ) 4 − 4 n + 2 ( e − 1 ) 2 + 4 1 / n .$
Proof.
(1) Let $𝟊 ∈ F 1$ and define $p , ℏ : E → C$ by $p ( ξ ) = g ( ξ ) ξ$ and $ℏ ( ξ ) = 𝟊 ( ξ ) g ( ξ )$. Then, clearly, $p , ℏ ∈ P n$, since $𝟊 ( ξ ) = ξ p ( ξ ) ℏ ( ξ ) .$ By Lemma 2, and by combining the above inequalities, we have
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 ≤ 4 n ℓ n 1 − ℓ 2 n ≤ 1 − 1 ( e − 1 ) 2 .$
After some simplification, we arrive at
$ℓ ≤ e ( e − 2 ) 2 n ( e − 1 ) 2 + 1 + 4 n 2 + 1 ( e − 1 ) 4 − 2 ( e − 1 ) 2 1 / n = R S B S , n * ( F 1 ) .$
To verify the sharpness of result, consider the functions defined by
$𝟊 4 ( ξ ) = ξ 1 + ξ n 1 − ξ n 2 and g 0 ( ξ ) = ξ 1 + ξ n 1 − ξ n .$
Then, clearly $R e 𝟊 4 ( ξ ) g 0 ( ξ ) > 0$, and $R e g 0 ( ξ ) ξ > 0 .$ Hence, $𝟊 0 ∈ F 1$. We see that at $ξ = R S B S , n * ( F 1 ) e i π / n$ as follows:
$ξ 𝟊 4 ′ ( ξ ) 𝟊 4 ( ξ ) = 1 + 4 n ξ n 1 − ξ 2 n = 1 ( e − 1 ) 2 .$
Hence, the sharpness is satisfied.
(2) Let $𝟊 ∈ F 2$. Define $p , ℏ : E → C$ by $p ( ξ ) = g ( ξ ) ξ$ and $ℏ ( ξ ) = 𝟊 ( ξ ) g ( ξ ) .$ Then, $p ∈ P n$, and $ℏ ∈ P n ( 1 / 2 )$. Since $𝟊 ( ξ ) = ξ p ( ξ ) ℏ ( ξ )$, then according to Lemma 2, we have
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 ≤ 3 n ℓ n + n ℓ 2 n 1 − ℓ 2 n ≤ 1 − 1 ( e − 1 ) 2 ,$
which implies that
$ℓ ≤ 2 e ( e − 2 ) 3 n ( e − 1 ) 2 + 9 n 2 ( e − 1 ) 4 + 4 [ ( n + 1 ) ( e − 1 ) 2 − 1 ] [ e ( e − 2 ) ] 1 / n = R S B S , n * ( F 2 ) .$
Thus, $𝟊 ∈ S B S , n *$ for $ℓ ≤ R S B S , n * ( F 2 )$.
For sharpness, consider the following:
$𝟊 5 ( ξ ) = ξ ( 1 + ξ n ) ( 1 − ξ n ) 2 and g 1 ( ξ ) = ξ 1 − ξ n .$
Then clearly $R e 𝟊 5 ( ξ ) g 1 ( ξ ) > 0$, and $R e g 1 ( ξ ) ξ > 1 2 .$ Hence, $𝟊 ∈ F 2$. Now, at $ξ = R S B S , n * ( F 2 )$
$ξ 𝟊 5 ′ ( ξ ) 𝟊 5 ( ξ ) = 1 + 3 n ξ n + n ξ 2 n 1 − ξ 2 n = 1 ( e − 1 ) 2 .$
Hence, the sharpness is satisfied.
(3) Let $𝟊 ∈ F 3$. Define $p , ℏ : E → C$ by $p ( ξ ) = g ( ξ ) ξ$ and $ℏ ( ξ ) = g ( ξ ) 𝟊 ( ξ ) .$ Then, $p ∈ P n$ and
$1 ℏ ( ξ ) − 1 < 1 ⇔ R e ( ℏ ( ξ ) ) > 1 / 2 ;$
therefore, $ℏ ∈ P n ( 1 / 2 )$. Since $𝟊 ( ξ ) ℏ ( ξ ) = ξ p ( ξ )$, then according to Lemma 2, we have
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) − 1 ≤ 3 n ℓ n + n ℓ 2 n 1 − ℓ 2 n ≤ 1 − 1 ( e − 1 ) 2 .$
This implies that
$ℓ ≤ 2 e ( e − 2 ) 3 n ( e − 1 ) 2 + 9 n 2 + 4 n + 4 ( e − 1 ) 4 − 4 n + 2 ( e − 1 ) 2 + 4 1 / n = R S B S , n * ( F 3 ) .$
Thus, $𝟊 ∈ S B S , n *$ for $ℓ ≤ R S B S , n * ( F 3 )$. For sharpness, consider the following:
$𝟊 6 ( ξ ) = ξ ( 1 + ξ n ) 2 1 − ξ n and g 2 ( ξ ) = ξ ( 1 + ξ n ) 1 − ξ n .$
We see that
$R e g 2 ( ξ ) 𝟊 6 ( ξ ) = R e 1 1 + ξ n > 1 2 ,$
and
$R e 𝟊 6 ( ξ ) ξ = R e 1 + ξ n 1 − ξ n > 0 .$
Therefore, $𝟊 6 ∈ F 3$. A computation shows that at $ξ = R S B S , n * ( F 3 ) e i π / n$, which comes out to
$ξ 𝟊 6 ′ ( ξ ) 𝟊 6 ( ξ ) − 1 = 3 n ξ n + n ξ 2 n 1 − ξ 2 n = 1 − 1 ( e − 1 ) 2 .$
Hence, the sharpness is satisfied. □

## 3. Coefficient and Hankel Determinant Problems for the Class $S B S *$

Pommerenke [28] was the first to introduce the qth Hankel determinant for analytic functions, and it is stated as follows:
$H q , n 𝟊 : = d n d n + 1 … d n + q − 1 d n + 1 d n + 2 … d n + q ⋮ ⋮ … ⋮ d n + q − 1 d n + q … d n + 2 q − 2 ,$
where $n ,$$q ∈ N .$ We note that
$H 2 , 1 𝟊 = d 3 − d 2 2 , H 2 , 2 𝟊 = d 2 d 4 − d 3 2 .$
In this section, we focus on obtaining sharp coefficient bounds and bounds on $H 2 , 1 𝟊$ and $H 2 , 2 𝟊 .$
We will use the following results related to the class $P$.
Lemma 6
([5]). Let $p ∈ P$ and be of the form (6). Then for v, a complex number
$| p 2 − v p 1 2 | ≤ 2 max ( 1 , | 2 v − 1 | ) .$
Lemma 7
([29,30]). Let $p ∈ P$ and be of the form (6) such that $| ρ | ≤ 1$, and $| η | ≤ 1$. Then,
$2 p 2 = p 1 2 + ρ ( 4 − p 1 2 ) ,$
$4 p 3 = p 1 3 + 2 ( 4 − p 1 2 ) p 1 ρ − ( 4 − p 1 2 ) p 1 2 ρ + 2 ( 4 − p 1 2 ) ( 1 − | ρ | 2 ) η ,$
Lemma 8
([31]). Let $ϖ ∈ B$ be given by $ϖ ( z ) = ∑ n = 0 ∞ c n ξ n$, and thus
$ψ u , v = c 3 + μ 1 c 1 c 2 + μ 2 c 1 3 .$
Then, $ψ u , v ≤ ν$ if $u , v ∈ D 6 ,$ where
$D 6 = u , v : 2 ≤ μ ≤ 4 , ν ≥ 1 12 μ 2 + 8 .$
Lemma 9
([32]). Let $E ¯ : = { ρ ∈ C : | ρ | ≤ 1 }$, and, for j, k, and $l ∈ R$, let
$Y ( j , k , l ) : = max | j + k ρ + l ρ 2 | + 1 − | ρ | 2 : ρ ∈ E ¯ .$
If $j l ≥ 0 ,$ then
$Y ( j , k , l ) = | j | + | k | + | l | , | k | ≥ 2 ( 1 − | l | ) , 1 + | j | + k 2 4 ( 1 − | l | ) , | k | < 2 ( 1 − | l | ) .$
If $j l < 0 ,$ then
$Y ( j , k , l ) = 1 − | j | + k 2 4 ( 1 − | l | ) , − 4 j l l − 2 − 1 ≤ k 2 ∧ | k | < 2 ( 1 − | l | ) , 1 + | j | + k 2 4 ( 1 + | l | ) , k 2 < min 4 ( 1 + | l | ) 2 , − 4 j l l − 2 − 1 . R j , k , l , otherwise .$
In such as case,
$R ( j , k , l ) = | j | + | k | − | l | , | l | ( k + 4 | j | ) ≤ j k , 1 + | j | + k 2 4 ( 1 + | l | ) , j k < | l | ( k − 4 | j | ) ≤ j k . l + | j | 1 − k 2 4 j l , otherwise .$
Theorem 8.
Let $𝟊 ∈ S B S *$ and be of the form (2). Then,
$| d 2 | ≤ 1 , | d 3 | ≤ 17 24 , | d 4 | ≤ 29 72 .$
These bounds are the best possible.
Proof.
If $𝟊 ∈ S B S *$, then
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) = ϖ ( ξ ) e ϖ ( ξ ) − 1 2 ,$
where $ϖ ∈ B$. The class $B$ consists of Schwarz functions $ϖ$ that are analytic in $E$, with $ϖ 0 = 0$, and $ϖ ξ ≤ ξ$. Let p be of the form 6. Then,
$ϖ ( ξ ) = p ( ξ ) − 1 p ( ξ ) + 1 .$
Now by using (2)$,$ we can write out the following:
$ξ 𝟊 ′ ( ξ ) 𝟊 ( ξ ) = 1 + d 2 ξ + ( 2 d 3 − d 2 2 ) ξ 2 + ( 3 d 4 − 3 d 2 d 3 + d 2 3 ) ξ 3 + ( 4 d 5 − 2 d 3 2 − 4 d 2 d 4 + 4 d 2 2 d 3 − d 2 4 ) ξ 4 + ⋯ .$
$μ ( ξ ) e μ ( ξ ) − 1 2 = 1 − 1 2 p 1 ξ + 29 96 p 1 2 − 1 4 p 2 ξ 2 + − 109 576 p 1 3 + 13 36 p 1 p 2 − 1 6 p 3 ξ 3 + 11011 92160 p 1 4 − 215 576 p 2 p 1 2 + 25 96 p 1 p 3 + 23 192 p 2 2 − 1 8 p 4 ξ 4 + ⋯ .$
From (13) and (14), we obtain
$d 2 = 1 2 p 1 ,$
$d 3 = 29 96 p 1 2 − 1 4 p 2 ,$
$d 4 = − 109 576 p 1 3 + 13 36 p 1 p 2 − 1 6 p 3 .$
From (15), we have $| d 2 | = 1 2 | p 1 | ≤ 1 .$ From (16), we can write out the following:
$| d 3 | = 1 4 p 2 − 29 24 p 1 2 .$
An application of Lemma 6 for $v = 29 24$ gives the required bound.
The function $ϖ ∈ B$ can be written as a power series:
$ϖ ( z ) = ∑ n = 1 ∞ c n z n , z ∈ E .$
Since $p ∈ P$, therefore,
$p ( z ) = 1 + ϖ ( z ) 1 − ϖ ( z ) .$
By comparing the coefficients at powers of z in
$1 − ϖ ( z ) p ( z ) = 1 + ϖ ( z ) ,$
we obtain
$p 1 = 2 c 1 , p 2 = 2 c 2 + 2 c 1 2 , p 3 = 2 c 3 + 4 c 1 c 2 + 2 c 1 3 .$
By putting these values in (17)$,$ we obtain
$d 4 = − 1 3 c 3 + μ 1 c 1 c 2 + μ 2 c 1 3 ,$
where $μ 1 = − 7 3$, and $μ 2 = 29 24 .$ Now, by using Lemma 8, we have $2 ≤ μ 1 ≤ 4$, and $μ 1 − 1 12 ( μ 2 + 8 ) = 19 216$; therefore,
$| d 4 | ≤ 1 3 μ 2 = 29 72 .$
The equalities in each coefficient $| d 2 |$, $| d 3 |$, and $| d 4 |$ are respectively obtained by taking the following:
$𝟊 1 ( ξ ) = ξ exp ∫ 0 ξ ( t e t − 1 ) 2 − 1 t d t = ξ − ξ 2 + 17 24 ξ 3 − 29 72 ξ 4 + ⋯ .$
Theorem 9.
Let $𝟊 ∈ S B S *$ and have the series representation given in (2). Then,
$| d 3 − d 2 2 | ≤ 1 2 .$
Theorem 10.
Let $𝟊 ∈ S B S *$ and have the series representation given in (2). Then,
$H 2 , 2 𝟊 = | d 2 d 4 − d 3 2 | ≤ 521 576 .$
The equality is obtained by the $𝟊 1$ given in (19)$.$
Proof.
Using (15)–(17), we obtain
$H 2 , 2 𝟊 = d 2 d 4 − d 3 2 = − 571 3072 p 1 4 + 191 576 p 1 2 p 2 − 1 12 p 1 p 3 − 1 16 p 2 2 .$
As we can see that the functional $H 2 , 2 𝟊$ and the class $S B S *$ are rotationally invariant, we may therefore take $p : = p 1$ such that $p ∈ 0 , 2$. Then, by using Lemma 7, and after some computations, we may write out the following:
$H 2 , 2 𝟊 = − 571 9216 p 4 + 107 1152 p 2 ( 4 − p 2 ) ρ − 1 192 ( 4 − p 2 ) 12 − 7 p 2 ρ 2 − 1 24 p ( 4 − p 2 ) 1 − | ρ | 2 η ,$
where $ρ$ and $η$ satisfy the relation $| ρ | ≤ 1$ and $| η | ≤ 1 .$
Firstly, we consider the case when $p = 0 .$ Then, $H 2 , 2 𝟊 = − 1 4 ρ 2 ≤ 1 4$. Next, we assume that $p = 2 ;$ then, $H 2 , 2 𝟊 = 521 576 .$ Now suppose that $p ∈ 0 , 2$; then,
$H 2 , 2 𝟊 ≤ 1 24 p ( 4 − p 2 ) Φ j , k , l ,$
where
$Φ j , k , l = j + k ρ + l ρ 2 + 1 − | ρ | 2 , ρ ∈ E ¯ ,$
with $j = 521 p 3 384 ( 4 − p 2 ) ,$$k = − 107 p 48$, and $l = 12 − 7 p 2 8 p$; then clearly,
$j l = 521 p 2 12 − 7 p 2 3072 4 − p 2 ≥ 0 , for p ∈ 12 7 , 2 .$
$k − 2 ( 1 − l ) = 23 p 2 − 96 p + 144 48 p > 0 p ∈ 12 7 , 2$
so that $k > 2 ( 1 − l ) ,$ and by applying Lemma 9, we can obtain
$H 2 , 2 𝟊 ≤ 1 24 p ( 4 − p 2 ) j + k + l = g p ,$
where
$g p = 1 9216 p 4 + 24 288 p 2 + 1 4 .$
Clearly, $g ′ p > 0$, and so
$max g p = g 2 = 521 576 .$
We also see from (23) that
$j l = 521 p 2 12 − 7 p 2 3072 4 − p 2 < 0 , for p ∈ 0 , 12 7 .$
Thus,
$k 2 − 4 j l l − 2 − 1 = 1 576 p 2 ( 889 p 2 − 20280 ) 7 p 2 − 12 < 0 , p ∈ 0 , 12 7 .$
This shows that $− 4 j l l − 2 − 1 ≤ k 2 ∧ | k | < 2 ( 1 − | l | ) .$ In addition,
$Φ p = 4 ( 1 + | l | ) 2 + 4 j l l − 2 − 1 = 7 p − 6 1295 p 5 − 4266 p 4 + 2688 p 3 + 2073 p 2 + 2304 p − 13824 p 2 12 − 7 p 2 .$
We see that $Φ p > 0$ for $p ∈ 0 , 0.76032 ∪ 6 7 , 12 7$, and $Φ p < 0$ for $p ∈ 0.76032 , 6 7 .$ Hence, we conclude that
$min 4 ( 1 + | l | ) 2 , − 4 j l l − 2 − 1 = − 4 j l l − 2 − 1 , p ∈ 0 , 0.76032 ∪ 6 7 , 12 7 , 4 ( 1 + | l | ) 2 0.76032 , 6 7 .$
As a result,
$k 2 − 4 ( 1 + | l | ) 2 = 23 p 2 − 96 p + 144 191 p 2 + 96 p − 144 2304 > 0 for 0.76032 , 6 7 .$
$k 2 + 4 ( 1 + | l | ) 2 = p 2 78365 p 2 − 96828 1152 7 p 2 − 12 < 0 for 96828 78365 , 12 7 .$
This shows that $k 2 < min 4 ( 1 + | l | ) 2 , − 4 j l l − 2 − 1$ hold for $p ∈ 96828 78365 , 12 7$. By applying Lemma 9, we arrive at the following:
$H 2 , 2 𝟊 ≤ 1 24 p ( 4 − p 2 ) 1 + j + k 2 4 1 + l = g 1 p ,$
where
$g 1 p = p 127 p 4 − 1364 p 3 − 1728 p 2 − 8064 p + 6912 6912 6 − 7 p .$
This attains its maxima at $p = 12 7 .$ Hence,
$H 2 , 2 𝟊 ≤ 21 − 4413 + 3034 21 − 148176 + 49392 21 < 521 576 .$
We are left with the case $p ∈ 0 , 96828 78365$. We also see that
$| l | ( k + 4 | j | ) − j k = 4171 p 4 − 55392 p 2 + 246528 18432 p 2 − 4 < 0 p ∈ 0 , 96828 78365 .$
We conclude that $| l | ( k + 4 | j | ) < j k$. By applying Lemma 9, we arrive at the following:
$H 2 , 2 𝟊 ≤ 1 24 p ( 4 − p 2 ) j + k − l = g p ,$
where g is given in (24)$,$ this giving us the required result. The function given in (19) belongs to the $S B S *$, as $d 2 = − 1$, $d 4 = − 29 / 72$, and $d 3 = 17 / 24$, which yields the sharpness of (21). Hence, the proof is done. □

## 4. Conclusions

We have introduced a subclass of $S *$ associated with Bernoulli numbers of the second kind and studied some geometrical properties of the introduced class. These results include radii problems, inclusion problems, coefficient bounds, and Hankel determinants. The new defined class can further be studied for determining the bounds of Hankel and Toeplitz determinants, and the same can also be found for logarithmic coefficients and for the coefficients of inverse functions.

## Author Contributions

Conceptualization, M.R. and M.T.; methodology, M.R. and M.T.; software, S.N.M.; validation, M.R. and S.N.M.; formal analysis, M.R.; investigation, M.R. and M.T.; resources, J.-S.R. and F.T.; data curation, J.-S.R. and F.T.; writing—original draft preparation, S.N.M.; writing—review and editing, S.N.M.; visualization, J.-S.R. and F.T.; supervision, M.R.; project administration, S.N.M.; funding acquisition, J.-S.R. and F.T. All authors have read and agreed to the published version of the manuscript.

## Funding

This research received no external funding.

Not applicable.

Not applicable.

Not applicable.

## Acknowledgments

1. This research was supported by the researchers Supporting Project Number (RSP2023R401), at King Saud University, Riyadh, Saudi Arabia. 2. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022R1A2C2004874). 3. This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP), as well as the Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea (No. 20214000000280).

## Conflicts of Interest

The authors declare no conflict of interest.

## References

1. Coen, L.E.S. Sums of Powers and the Bernoulli Numbers. Master’s Thesis, Eastern Illinois University, Charleston, IL, USA, 1996. [Google Scholar]
2. Mocnu, P.T. Convexity of some particular functions. Stud. Univ. Babes-Bolyai Math. 1984, 29, 70–73. [Google Scholar]
3. Serb, I. The radius of convexity and starlikeness of a particular function. Math Montisnigri. 1996, 7, 65–69. [Google Scholar]
4. Miller, S.S.; Mocanu, P.T. Differential Subordinations. Monographs and Textbooks in Pure and Applied Mathematics; Dekker: New York, NY, USA, 2000; Volume 225. [Google Scholar]
5. Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceeding of the Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Boston, MA, USA, 1994; pp. 157–169. [Google Scholar]
6. Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Polon. Math. 1973, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
7. Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
8. Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Int. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
9. Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
10. Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
11. Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
12. Bano, K.; Raza, M. Starlike functions associated with cosine functions. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
13. Raina, R.K.; Sokół, J. On coefficient for certain class of starlike functions. Hacet. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
14. Kargar, R.; Ebadian, A.; Sokół, J. On Booth lemniscate and starlike functions. Anal. Math. Phys. 2019, 9, 143–154. [Google Scholar] [CrossRef]
15. Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivastava, H.M. Starlike functions related to the Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef] [Green Version]
16. Deniz, E. Sharp coefficient bounds for starlike functions associated with generalized telephone numbers. Bull. Malays. Math. Sci. Soc. 2021, 44, 1525–1542. [Google Scholar] [CrossRef]
17. Raza, M.; Binyamin, M.A.; Riaz, A. A study of convex and related functions in the perspective of geometric function theory. In Inequalities with Generalized Convex Functions and Applications; Awan, M.U., Cristescu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; To be published. [Google Scholar]
18. Goel, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
19. Kanas, S.; Masih, V.S. On the behaviour of analytic representation of the generalized Pascal snail. Anal. Math. Phy. 2021, 11, 77. [Google Scholar] [CrossRef]
20. Malik, S.N.; Raza, M.; Sokół, J.; Zainab, S. Analytic functions associated with cardioid domain. Turk. J. Math. 2020, 44, 1127–1136. [Google Scholar] [CrossRef]
21. Masih, V.S.; Kanas, S. Subclasses of starlike and convex functions associated with the limaçon domain. Symmetry 2020, 12, 942. [Google Scholar] [CrossRef]
22. Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
23. Yunus, Y.; Halim, S.A.; Akbarally, A.B. Subclass of starlike functions associated with a limaçon. AIP Conf. Proc. 2018, 1974, 030023. [Google Scholar]
24. Ali, R.M.; Jain, N.K.; Ravichandran, V. Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane. Appl. Math. Comput. 2012, 128, 6557–6565. [Google Scholar] [CrossRef] [Green Version]
25. Shah, G.M. On the univalence of some analytic functions. Pac. J. Math. 1972, 43, 239–250. [Google Scholar] [CrossRef]
26. Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
27. Ravichandran, V.; Rønning, F.; Shanmugam, T.N. Radius of convexity and radius of starlikeness for some classes of analytic functions. Complex Var. 1997, 33, 265–280. [Google Scholar] [CrossRef]
28. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
29. Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
30. Libera, R.J.; Zlotkiewicz, E.J. Early coefficients of the inverse of a regular convex functions. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
31. Prokhorov, D.V.; Szynal, J. Inverse coeffiecients for (α,β)-convex functions. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1981, 35, 125–143. [Google Scholar]
32. Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete–Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
 Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

## Share and Cite

MDPI and ACS Style

Raza, M.; Tariq, M.; Ro, J.-S.; Tchier, F.; Malik, S.N. Starlike Functions Associated with Bernoulli’s Numbers of Second Kind. Axioms 2023, 12, 764. https://doi.org/10.3390/axioms12080764

AMA Style

Raza M, Tariq M, Ro J-S, Tchier F, Malik SN. Starlike Functions Associated with Bernoulli’s Numbers of Second Kind. Axioms. 2023; 12(8):764. https://doi.org/10.3390/axioms12080764

Chicago/Turabian Style

Raza, Mohsan, Mehak Tariq, Jong-Suk Ro, Fairouz Tchier, and Sarfraz Nawaz Malik. 2023. "Starlike Functions Associated with Bernoulli’s Numbers of Second Kind" Axioms 12, no. 8: 764. https://doi.org/10.3390/axioms12080764

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.