Classes of Harmonic Functions Related to Mittag-Leffler Function
Abstract
:1. Introduction
2. Mittag-Leffler Function
3. Preliminary Lemmas
4. Inclusion Relations of the Class
5. Special Cases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choquet, G. Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques. Bull. Sci. Math. 1945, 89, 156–165. [Google Scholar]
- Kneser, H. Losung der Aufgabe 41. Jahresber. Dtsch. Math.-Ver. 1926, 36, 123–124. [Google Scholar]
- Lewy, H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Amer. Math. Soc. 1936, 42, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Rado, T. Aufgabe 41. Jahresber. Dtsch. Math.-Ver. 1926, 35, 49. [Google Scholar]
- Clunie, J.; Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fen. Series A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Jahangiri, J.M. Noshiro-type harmonic univalent functions. Sci. Math. Jap. 2002, 6, 253–259. [Google Scholar]
- Duren, P. Harmonic Mappings in the Plane. Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 2004; Volume 156. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A. Comprehensive family of harmonic univalent functions. SUT J. Math. 2006, 42, 145–155. [Google Scholar] [CrossRef]
- Frasin, B.A.; Magesh, N. Certain subclasses of uniformly harmonic β-starlike functions of complex order. Stud. Univ. Babes-Bolyai Math. 2013, 58, 147–158. [Google Scholar]
- Jahangiri, J.M. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 1999, 235, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Vijaya, K.; Frasin, B.A. A subclass of harmonic functions with negative coefficients defined by Dziok-Srivastava operator. Tamkang J. Math. 2011, 42, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Ponnusamy, S.; Rasila, A. Planar harmonic mappings. RMS Math. Newsl. 2007, 17, 40–57. [Google Scholar]
- Silverman, H. Harmonic univalent function with negative coefficients. J. Math. Anal. Appl. 1998, 220, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Alsoboh, A.; Darus, M.; Amourah, A.; Atshan, W.G. A Certain Subclass of Harmonic Meromorphic Functions with Respect to k-Symmetric Points. Int. J. Open Probl. Complex Anal. 2023, 15, 1–16. [Google Scholar]
- Silverman, H.; Silvia, E.M. Subclasses of harmonic univalent functions. N. Z. J. Math. 1999, 28, 275–284. [Google Scholar]
- Alsoboh, A.; Amourah, A.; Darus, M.; Rudder, C.A. Studying the Harmonic Functions Associated with Quantum Calculus. Mathematics 2023, 11, 2220. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. Alsoboh, A.; Darus, M. A q-Starlike Class of Harmonic Meromorphic Functions Defined by q-Derivative Operator. In International Conference on Mathematics and Computations; Springer Nature: Singapore, 2022; pp. 257–269. [Google Scholar]
- Ahuja, O.P.; Jahangiri, J.M. A subclass of harmonic univalent functions. J. Nat. Geom. 2001, 20, 45–56. [Google Scholar]
- Sokòl, J.; Ibrahim, R.W.; Ahmad, M.Z.; Al-Janaby, H.F. Inequalities of harmonic univalent functions with connections of hypergeometric functions. Open Math. 2015, 13, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Wiman, A. Uber die Nullstellun der Funcktionen E(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. Available online: http://www.jstor.org/stable/24898778 (accessed on 24 June 2023). [CrossRef] [Green Version]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equations 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Mittag-Leffler, G.M. Sur la nouvelle fonction E(x). Comptes Rendus Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; De la Sen, M. Hermite-Hadamard type inequalities involving k-fractional operator for (h,m)-convex functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Carlson, B.C.; Shaffer, D.B. Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 1984, 15, 737–745. [Google Scholar] [CrossRef]
- Frasin, B.A. Convexity of integral operators of p-valent functions. Math. Comput. Model. 2010, 51, 601–605. [Google Scholar] [CrossRef]
- Hohlov, Y.E. Convolution operators preserving univalent functions. Ukr. Math. J. 1985, 37, 220–226. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K.; Hijaz, A.; Mahmoud, K.H.; Khalil, E.M. Mapping properties of Janowski-type harmonic functions involving Mittag-Leffler function. AIMS Math. 2021, 6, 13235–13246. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F. Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions. Afr. Mat. 2019, 30, 223–230. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aldawish, I. On subclasses of uniformly spiral-like functions associated with generalized Bessel functions. J. Funct. Spaces. 2019, 2019. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Aouf, M.K.; Frasin, B.A. Certain subclasses of analytic functions with complex order associated with generalized Bessel functions. In Bulletin of the Transilvania University of Brasov; Series III: Mathematics and Computer Science; Transilvania University Press: Brasov, Romania, 2023; pp. 27–40. [Google Scholar]
- El-Ashwah, R.M.; Hassan, A.H. Some characterizations for a certain generalized Bessel function of the first kind to be in certain subclasses of analytic functions. Int. J. Open Probl. Complex Anal. 2017, 9, 14–37. [Google Scholar] [CrossRef]
- Bulboaca, T.; Murugusundaramoorthy, G. Univalent functions with positive coefficients involving Pascal distribution series. Commun. Korean Math. Soc. 2020, 35, 867–877. [Google Scholar] [CrossRef]
- Frasin, B.A. Subclasses of analytic functions associated with Pascal distribution series. Adv. Theory Nonlinear Anal. Appl. 2020, 4, 92–99. [Google Scholar] [CrossRef]
- Frasin, B.A.; Alb Lupas, A. An Application of Poisson Distribution Series on Harmonic Classes of Analytic Functions. Symmetry 2023, 15, 590. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Subclasses of starlike and convex functions involving Poisson distribution series. Afr. Mat. 2017, 28, 1357–1366. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Alsoboh, A.; Amourah, A.; Darus, M.; Rudder, C.A. Investigating New Subclasses of Bi-Univalent Functions Associated with q-Pascal Distribution Series Using the Subordination Principle. Symmetry 2023, 15, 1109. [Google Scholar] [CrossRef]
- Alsoboh, A.; Amourah, A.; Darus, M.; Sharefeen, R.I.A. Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions. Mathematics 2023, 11, 868. [Google Scholar] [CrossRef]
- Porwal, S.; Dixit, K.K. An application of hypergeometric functions on harmonic univalent functions. Bull. Math. Anal. Appl. 2010, 2, 97–105. [Google Scholar]
- Porwal, S.; Vijaya, K.; Kasthuri, M. Connections between various subclasses of planar harmonic mappings involving generalized Bessel functions. Le Matematiche 2016, 71, 99–114. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Khan, S.; Ahmad, Q.Z.; Khan, B. A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator. Mathematics 2021, 9, 1812. [Google Scholar] [CrossRef]
- Tariq, M.; Ahmad, H.; Sahoo, S.K. The Hermite-Hadamard type inequality and its estimations via generalized convex functions of Raina type. Math. Mod. Num. Sim. Appl. 2021, 1, 32–43. [Google Scholar] [CrossRef]
- Yaşar, E. Harmonic k-Uniformly Convex, k-Starlike Mappings and Pascal Distribution Series. Math. Sci. Appl. E-Notes 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Yalçın, S.; Murugusundaramoorthy, G.; Vijaya, K. Inclusion results on subclasses of harmonic univalent functions associated with Pascal distribution series. Palestine J. Math. 2022, 11, 267–275. [Google Scholar]
- Yousef, A.T.; Salleh, Z. On a Harmonic Univalent Subclass of Functions Involving a Generalized Linear Operator. Axioms 2020, 9, 32. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dohiman, A.A.; Frasin, B.A.; Taşar, N.; Sakar, F.M. Classes of Harmonic Functions Related to Mittag-Leffler Function. Axioms 2023, 12, 714. https://doi.org/10.3390/axioms12070714
Al-Dohiman AA, Frasin BA, Taşar N, Sakar FM. Classes of Harmonic Functions Related to Mittag-Leffler Function. Axioms. 2023; 12(7):714. https://doi.org/10.3390/axioms12070714
Chicago/Turabian StyleAl-Dohiman, Abeer A., Basem Aref Frasin, Naci Taşar, and Fethiye Müge Sakar. 2023. "Classes of Harmonic Functions Related to Mittag-Leffler Function" Axioms 12, no. 7: 714. https://doi.org/10.3390/axioms12070714
APA StyleAl-Dohiman, A. A., Frasin, B. A., Taşar, N., & Sakar, F. M. (2023). Classes of Harmonic Functions Related to Mittag-Leffler Function. Axioms, 12(7), 714. https://doi.org/10.3390/axioms12070714